优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. (2016春•万州区校级期中)如图所示,一正方形线圈的匝数为n,边长为a,电阻为R,线圈平面与匀强磁场垂直,且一半处在磁场中.在△t时间内,磁感应强度的方向不变,大小由B均匀增大到2B.在此过程中,通过线圈导线某个横截面的电荷量为(  )
              A.
              Ba2
              R
              B.
              nBa2
              R
              C.
              nBa2
              2R
              D.
              Ba2
              2R
            • 2. (2016春•西城区校级期中)如图所示,理想变压器原、副线圈匝数比为2:1,电池和交变电源的电动势都为6Ⅴ,内阻均不计.下列说法正确的是(  )
              A.S与a接通的瞬间,R中无感应电流
              B.S与a接通稳定后,R两端的电压为3V
              C.s与b接通稳定后,R两端的电压为3V
              D.S与b接通稳定后,原、副线圈中电流的频率之比为2:1
            • 3. (2016春•乐山校级期中)如图所示,A是一面积为S=0.2m2、匝数为n=100匝的圆形线圈,处在均匀磁场中,磁场方向与线圈平面垂直,磁感应强度随时间变化规律为B=(6-0.02t)T,开始时外电路开关S断开,已知R1=4Ω,R2=6Ω,电容器电容C=30 μF,线圈内阻不计,求:
              (1)S闭合后,通过R2的电流大小;
              (2)S闭合一段时间后又断开,在断开后流过R2的电荷量.
            • 4. 如图,半径为R的圆形线圈两端A、C接入一个平行板电容器,线圈放在随时间均匀变化的匀强磁场中,线圈所在平面与磁感线的方向垂直,要使电容器所带的电量增大,可采取的措施是(  )
              A.电容器的两极板靠近些
              B.增大磁感强度的变化率
              C.增大线圈的面积
              D.使线圈平面与磁场方向成60°角
            • 5. 在如图甲所示的半径为r的竖直圆柱形区域内,存在竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B=kt(k>0且为常量).
              (1)将一由细导线构成的半径为r、电阻为R0的导体圆环水平固定在上述磁场中,并使圆环中心与磁场区域的中心重合.求在T时间内导体圆环产生的焦耳热.

              (2)上述导体圆环之所以会产生电流是因为变化的磁场会在空间激发涡旋电场,该涡旋电场趋使导体内的自由电荷定向移动,形成电流.如图乙所示,变化的磁场产生的涡旋电场存在于磁场内外的广阔空间中,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合.在半径为r的圆周上,涡旋电场的电场强度大小处处相等,并且可以用E=
              ɛ
              2πr
              计算,其中ε为由于磁场变化在半径为r的导体圆环中产生的感生电动势.如图丙所示,在磁场区域的水平面内固定一个内壁光滑的绝缘环形真空细管道,其内环半径为r,管道中心与磁场区域的中心重合.由于细管道半径远远小于r,因此细管道内各处电场强度大小可视为相等的.某时刻,将管道内电荷量为q的带正电小球由静止释放(小球的直径略小于真空细管道的直径),小球受到切向的涡旋电场力的作用而运动,该力将改变小球速度的大小.该涡旋电场力与电场强度的关系和静电力与电场强度的关系相同.假设小球在运动过程中其电荷量保持不变,忽略小球受到的重力、小球运动时激发的磁场以及相对论效应.
              ①若小球由静止经过一段时间加速,获得动能Em,求小球在这段时间内在真空细管道内运动的圈数;
              ②若在真空细管道内部空间加有方向竖直向上的恒定匀强磁场,小球开始运动后经过时间t0,小球与环形真空细管道之间恰好没有作用力,求在真空细管道内部所加磁场的磁感应强度的大小.
            • 6. (2016春•葫芦岛期中)如图所示,一个面积为S,匝数为n的圆形线圈,线圈平面与匀强磁场垂直,且一半在磁场中,在时间t内,磁感应强度的方向不变、大小由B增大到2B,在此过程中,线圈中产生的感应电动势为(  )
              A.
              BS
              t
              B.n
              BS
              t
              C.n
              BS
              2t
              D.n
              2BS
              t
            • 7. 在垂直纸面向里的匀强磁场中,穿过该区域磁场的磁感应强度随时间的变化率
              △B
              △t
              =0.2T/s,将面积S=1.0m2、电阻r=0.20Ω的单匝闭合正方形线圈放入磁场,使线圈所在平面与磁感线垂直,求:
              (1)线圈中的感应电动势;
              (2)线圈中的感应电流.
            • 8. 如图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场.线圈绕垂直于磁场的水平轴OO′沿逆时针方向匀速转动,从图甲所示位置开始计时,产生的交变电流随时间变化的图象如图乙所示,交流电流表的示数为10A.以下判断正确的是(  )
              A.图乙中Im=10
              2
              A
              B.线圈转动的角速度为50πrad/s
              C.线圈转动的角速度为100πrad/s
              D.t=0.01s时,穿过线圈平面的磁通量最大
            • 9. (2016春•周口校级期中)如图所示,边长为L,匝数为N的正方形线圈abcd位于纸面内,线圈内接有电阻值为R的电阻,过ab中点和cd中点的连线OO′恰好位于垂直纸面向里的匀强磁场的右边界上,磁场的磁感应强度为2B.当线圈转过90°时,通过电阻R的电荷量为(  )
              A.
              BL2
              2R
              B.
              NBL2
              2R
              C.
              BL2
              R
              D.
              NBL2
              R
            • 10. (2015春•海淀区期中)某一金属细导线的横截面积为S、电阻率为ρ,将此细导线弯曲成半径为r的导体圆环,细导线的直径远远小于圆环的半径r.将此导体圆环水平地固定,在导体圆环的内部存在竖直向上的匀强磁场,如图甲所示,磁感应强度的大小随时间的变化关系为B=kt(k>0且为常量).该变化的磁场会产生涡旋电场,该涡旋电场存在于磁场内外的广阔空间中,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合,如图乙所示.该涡旋电场会趋使上述金属圆环内的自由电子定向移动,形成电流.在半径为r的圆周上,涡旋电场的电场强度大小E处处相等,并且可以用E=
              ε
              2πr
              计算,其中ε为由于磁场变化在半径为r的导体圆环中产生的感生电动势.涡旋电场力与电场强度的关系和静电力与电场强度的关系相同.
              经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞.假设电子与金属离子碰撞后其定向运动的速度立刻减为零,之后再次被涡旋电场加速,再次碰撞减速为零,…,依此类推;所有电子与金属离子碰撞的时间间隔都为τ,电子的质量为m、电荷量为-e.忽略电子运动产生的磁场、电子减速过程中的电磁辐射以及电子热运动的影响,不考虑相对论效应.
              (1)根据焦耳定律求在τ时间内导体圆环内产生的焦耳热的大小;
              (2)求单个电子在与金属离子碰撞过程中损失的动能;
              (3)设金属细导线单位体积内的自由电子数为n,在题干中的情景和模型的基础上推导金属细导线的电阻率ρ的表达式(结果用n、e、τ、m表示).
            0/40

            进入组卷