优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              如图所示,两根平行金属导轨\(MN\)、\(PQ\)相距\(d=1.0m\),导轨平面与水平面夹角\(\alpha =30{}^\circ \),导轨上端跨接一定值电阻\(R=1.6\Omega \),导轨电阻不计。整个装置处于方向垂直导轨平面向上、磁感应强度大小\(B=1.0T\)的匀强磁场中,金属棒\(ef\)垂直于\(MN\)、\(PQ\)静止放置,且与导轨保持良好接触,其长度刚好为\(d\)、质量\(m_{1}=0.10kg\)、电阻\(r=0.40\Omega \),距导轨底端的距离\({{s}_{1}}=3.75{m}\)。另一根与金属棒平行放置的绝缘棒\(gh\)长度也为\(d\),质量为\(m_{2}=0.05kg\),从轨道最低点以速度\(v_{0}=10m/s\)沿轨道上滑并与金属棒发生正碰\((\)碰撞时间极短\()\),碰后金属棒沿导轨上滑一段距离后再次静止,此过程中流过金属棒的电荷量\(q=0.1C\)且测得从碰撞至金属棒静止过程中金属棒上产生的焦耳热\(Q=0.05J\)。已知两棒与导轨间的动摩擦因数均为\(\mu =\dfrac{\sqrt{3}}{3}\),\(g=10m/s^{2}\)。求:


              \((1)\)碰后金属棒\(ef\)沿导轨上滑的最大距离\(s_{2}\);

              \((2)\)碰后瞬间绝缘棒\(gh\)的速度\(v_{3}\);          

              \((3)\)金属棒在导轨上运动的时间\(Δt\)。

            • 2.

              如图所示,\(E\)为内阻不计的电源,\(MN\)为同种材料制成的粗细均匀的长电阻丝,\(C\)为电容器。当滑动触头\(P\)以恒定速率从左向右匀速滑动时,关于电流计\(A\)的读数情况及通过\(A\)的电流方向,下列说法正确的是(    )

              A.读数逐渐变小,通过\(A\)的电流方向向左
              B.读数逐渐变大,通过\(A\)的电流方向向右
              C.读数稳定,通过\(A\)的电流方向向右
              D.读数稳定,通过\(A\)的电流方向向左
            • 3.
              今有甲、乙两个电阻,在相同时间内流过甲的电荷量是乙的\(2\)倍,甲、乙两端的电压之比为\(1\):\(2\),则甲、乙两个电阻阻值的比值为\((\)  \()\)
              A.\(1\):\(2\)
              B.\(1\):\(3\)
              C.\(1\):\(4\)
              D.\(1\):\(5\)
            • 4.

              如图所示,光滑平行金属导轨\(PQ\)、\(MN\)固定在光滑绝缘水平面上,导轨左端连接有阻值为\(R\)的定值电阻,导轨间距为\(L\),磁感应强高度大小为\(B\)、方向竖直向上的有界匀强磁场的边界\(ab\)、\(cd\)均垂直于导轨,且间距为\(s\),\(e\)、\(f\)分别为\(ac\)、\(bd\)的中点,将一长度为\(L\)、质量为\(m\)、阻值也为\(R\)的金属棒垂直导轨放置在\(ab\)左侧\(\dfrac{1}{2}s\)处,现给金属棒施加一个大小为\(F\)、方向水平向右的恒力,使金属棒从静止开始向右运动,金属棒向右运动过程中始终垂直于导轨并与导轨接触良好。当金属棒运动到\(ef\)位置时,加速度刚好为零,不计其它电阻。求:

              \((1)\)金属棒运动到\(ef\)位置时的速度大小;

              \((2)\)金属棒从初位置运动到\(ef\)位置,通过金属棒的电量;

              \((3)\)金属棒从初位置运动到\(ef\)位置,定值电阻\(R\)上产生的焦耳热。

            • 5.

              如图所示,两平行导轨间距\(L=1.0 m\),倾斜轨道光滑且足够长,与水平面的夹角\(θ=30^{\circ}\),水平轨道粗糙且与倾斜轨道圆滑连接。倾斜轨道处有垂直斜面向上的磁场,磁感应强度\(B=2.5 T\),水平轨道处没有磁场。金属棒\(ab\)质量\(m=0.5 kg\),电阻\(r=2.0 Ω\),运动中与导轨有良好接触,并且垂直于导轨。电阻\(R=8.0 Ω\),其余电阻不计。当金属棒从斜面上离地高度\(h=3.0 m\)处由静止释放,金属棒在水平轨道上滑行的距离\(x =1.25 m\),而且发现金属棒从更高处静止释放,金属棒在水平轨道上滑行的距离不变。取\(g=10 m/s^{2}\)。求:


              \((1)\)从高度\(h=3.0 m\)处由静止释放后,金属棒滑到斜面底端时的速度大小;

              \((2)\)水平轨道的动摩擦因数\(μ\);

              \((3)\)从某高度\(H\)处静止释放后至下滑到底端的过程中流过\(R\)的电量\(q = 2.0 C\),求该过程中电阻\(R\)上产生的热量。

            • 6.

              \((\)多选\()\)如图所示,水平放置的粗糙\(U\)形框架上接一个阻值为\(R\)\({\,\!}_{0}\)的电阻,放在垂直纸面向里、磁感应强度大小为\(B\)的匀强磁场中\(.\)一个半径为\(L\),质量为\(m\)的半圆形硬导体\(AC\)在水平向右的恒定拉力\(F\)作用下,由静止开始运动距离\(d\)后速度达到\(v\),半圆形硬导体\(AC\)的电阻为\(r\),其余电阻不计\(.\)下列说法正确的是\((\)  \()\)


              A.\(A\)点的电势高于\(C\)点的电势
              B.此时\(AC\)两端电压为\(U_{AC}\)\(=\)\( \dfrac{BLvR_{0}}{R_{0}+r}\)
              C.此过程中电路产生的电热为\(Q=Fd- \dfrac{1}{2}\)\(mv\)\({\,\!}^{2}\)
              D.此过程中通过电阻\(R_{0}\)的电荷量为\(q=\)\( \dfrac{2BLd}{R_{0}+r}\)
            • 7. 一个圆形线圈,共有\(n=10\)匝,其总电阻\(r=4.0 Ω\),线圈与阻值\(R\)\({\,\!}_{0}\)\(=16 Ω\)的外电阻连成闭合回路,如图甲所示。线圈内部存在着一个边长\(l=0.20 m\)的正方形区域,其中有分布均匀但强弱随时间变化的磁场,图乙显示了一个周期内磁场的变化情况,周期\(T=1.0×10\)\({\,\!}^{-2}\)\(s\),磁场方向以垂直线圈平面向外为正方向。求:

              \((1)t=\)\( \dfrac{1}{8}\)\(T\)时刻,电阻\(R\)\({\,\!}_{0}\)上的电流大小和方向;
              \((2)0~\)\( \dfrac{T}{2}\)时间内,流过电阻\(R\)\({\,\!}_{0}\)的电量;
              \((3)\)一个周期内电阻\(R\)\({\,\!}_{0}\)的发热量。
            • 8. 目前磁卡已有广泛的应用,如图甲所示,当记录磁性信息的磁卡以速度\(v\)在刷卡器插槽里匀速运动时,穿过刷卡器内线圈的磁通量按\(Φ=Φ_{0}\sin kvt\)规律变化,刷卡器内置线圈等效电路如图乙所示,已知线圈的匝数为\(n\),电阻为\(r\),外接电路的等效电阻为\(R\).

              \((1)\)求线圈两端的电压\(U\);
              \((2)\)若磁卡在刷卡器中运动的有效距离为\(l\),则刷卡一次线圈上产生的热量\(Q\)为多少?
              \((3)\)在任意一段\(\triangle t=\dfrac{\pi }{2{kv}}\)的时间内,通过等效电阻\(R\)的电荷量的最大值\(q_{m}\)为多少?
            • 9.

              \(57\)年,科学家首先提出了两类超导体的概念,一类称为Ⅰ型超导体,主要是金属超导体,另一类称为Ⅱ型超导体\((\)载流子为电子\()\),主要是合金和陶瓷超导体\(.\)Ⅰ型超导 体对磁场有屏蔽作用,即磁场无法进入超导体内部,而Ⅱ型超导体则不同,它允许磁场通过\(.\)现将一块长方体Ⅱ型超导体通入稳恒电流\(I\)后放入匀强磁场中,如图所示\(.\) 下列说法正确的是

              A.超导体的内部产生了热能
              B.超导体所受安培力等于其内部所有电荷定向移动所受洛伦兹力的合力
              C.超导体表面上\(a\)、\(b\)两点的电势关系为\(φ_{a} > φ_{b}\)
              D.超导体中电流\(I\)越大,\(a\)、\(b\)两点的电势差越大
            • 10.

              如图\((a)\)所示,用一根导线做成一个半径为\(r\)的圆环,其单位长度的电阻为\(r\)\({\,\!}_{0}\),将圆环的右半部分置于变化的匀强磁场中,设磁场方向垂直纸面向里为正,磁感应强度大小随时间做周期性变化关系如图\((b)\)所示,则

               

              A.在 \(t=π\)时刻,圆环中有顺时针方向的感应电流
              B.在\(0~\dfrac{\pi }{2}\)时间内圆环受到的安培力大小、方向均不变
              C.在\(\dfrac{\pi }{2}~\) \(π\)时间内通过圆环横截面的电量为\(\dfrac{{{B}_{0}}r}{2{{r}_{0}}}\) 
              D.圆环在一个周期内的发热量为\(\dfrac{B_{0}^{2}{{r}^{3}}}{{{r}_{0}}}\)
            0/40

            进入组卷