优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 氨是最重要的氮肥,是产量最大的化工产品之一.德国人哈伯在1905年发明了合成氨的方法,其合成原理为:N2(g)+3H2(g)⇌2NH3(g)△H=-92.4kJ•mol-1,他因此获得了1918年诺贝尔化学奖.  在密闭容器中,使2mol N2和6mol H2混合发生下列反应:N2(g)+3H2(g)⇌2NH3(g)(正反应为放热反应)
              (1)当反应达到平衡时,N2和H2的转化率比是    
              (2)升高平衡体系的温度(保持体积不变),混合气体的平均相对分子质量    
              密度    .(填“变大”“变小”或“不变”)
              (3)当达到平衡时,充入氩气,并保持压强不变,平衡将    (填“正向”“逆向”或“不”)移动.
            • 2. 已知在容积为10L固定的密闭容器中充入4molNH3和5molO2发生如下反应:4NH3(g)+5O2(g)⇌4NO(g)+6H2O(g),5s后,达到平衡并生成1molNO时:
              (1)用H2O表示反应速率为    ,O2的转化率为    
              (2)下列能说明该反应已经达到平衡状态的是    
              A.容器中气体总质量不变          B.c(O2)不变
              C.5υ(O2=4υ(NO)              D.体系压强不变
              (3)向该容器中加入正催化剂,则反应速率    (选填“增大”、“减小”、“不变”,下同),降低容器的温度则反应速率    ,通入Ar,则反应速率    
              (4)若反应在绝热密闭系统中进行时,其余条件不变,反应速率是先增大后减小,其原因是    
              A.反应体系温度先升高后降低,所以反应速率是先增大后减小
              B.反应物浓度先升高后降低,所以反应速率先增大后减小
              C.该反应为放热反应,在反应开始阶段,主要受体系温度升高的影响,反应速率增大;在反应后阶段,主要受浓度减小因素的影响,反应速率减慢
              (5)已知对于可逆化学反应 aA+bB⇋cC+dD在一定温度下达到化学平衡时,其平衡常数表达式为:K=
              cc(C)cd(D)
              ca(A)cb(B)
              ,则该温度下,上述反应的平衡常数K表达式    (用数据表达).
            • 3. 二甲醚是一种重要的清洁燃料,也可替代氟利昂作制冷剂等,对臭氧层无破坏作用.工业上可利用煤的气化产物(水煤气)合成二甲醚.
              请回答下列问题:
              (1)煤的气化的主要化学反应方程式为:    
              (2)利用水煤气合成二甲醚的三步反应如下:
              ①2H2(g)+CO(g)═CH3OH(g);△H=-90.8kJ•mol-1
              ②2CH3OH(g)═CH3OCH3(g)+H2O(g);△H=-23.5kJ•mol-1
              ③CO(g)+H2O(g)═CO2(g)+H2(g);△H=-41.3kJ•mol-1
              总反应:3H2(g)+3CO(g)═CH3OCH3(g)+CO2 (g)的△H=    ;一定条件下的密闭容器中,该总反应达到平衡,要提高CO的转化率,可以采取的措施是    (填字母代号).
              a.高温高压          b.加入催化剂        c.减少CO2的浓度
              d.增加CO的浓度    e.分离出二甲醚
              (3)已知反应②2CH3OH(g)═CH3OCH3(g)+H2O(g)某温度下的平衡常数为400.此温度下,在密闭恒容容器中加入CH3OH,反应到某时刻测得各组分浓度如下:
              物质CH3OHCH3OCH3H2O
              浓度/(mol•L-10.440.60.6
              ①比较此时正、逆反应速率的大小:v     v (填“>”、“<”或“=”).
              ②若加入CH3OH后,经10min反应达到平衡,此时c(CH3OH)=    ;该时间内反应速率v(CH3OH)=    
              ③下列措施中能说明反应达到平衡状态的是    
              A.体系压强保持不变    B.混合气体的密度保持不变
              C.CH3OH与H2O的浓度之比为1:2
              D.单位时间内,消耗2mol CH3OH的同时消耗1molH2O.
            • 4. (2016春•无为县校级期中)反应A(g)⇌B(g)+C(g)在容积为1.0L的密闭容器中进行,A的初始浓度为0.050mol•L-1.温度T1和T2下A的浓度与时间关系如图所示.回答下列问题:
              (1)上述反应的温度(填“大于”“小于”或“等于”,下同)T1    T2,平衡常数K(T1    K(T2).
              (2)若温度T2时,2min后反应达到平衡,A的转化率为60%,则:
              ①平衡时体系总的物质的量为    
              ②反应的平衡常数K=    
              ③反应在0~2min区间的平均反应速率v(A)=    
            • 5. 工业燃烧煤、石油等化石燃料释放出大量氮氧化物(NOx)、CO2、SO2等气体,严重污染空气.对废气进行脱硝、脱碳和脱硫处理可实现绿色环保、废物利用.
              Ⅰ.脱硝:已知:H2的热值为142.9KJ•g-1
              N2(g)+2O2(g)=2NO2(g)△H=+133kJ•mol-1
              H2O(g)=H2O(l)△H=-44kJ•mol-1
              催化剂存在下,H2还原NO2生成水蒸气和其它无毒物质的热化学方程式为    
              Ⅱ.脱碳:向2L密闭容器中加入2mol CO2、6mol H2,在适当的催化剂作用下,发生反应:
              CO2(g)+3H2(g)═CH3OH(l)+H2O(l)
              (1)①该反应自发进行的条件是    (填“低温”、“高温”或“任意温度”)
              ②下列叙述能说明此反应达到平衡状态的是    
              a、混合气体的平均式量保持不变      b、CO2和H2的体积分数保持不变
              c、CO2和H2的转化率相等           d、混合气体的密度保持不变
              e、1mol CO2生成的同时有3mol H-H键断裂
              ③CO2的浓度随时间(0~t2)变化如图所示,在t2时将容器容积缩小一倍,t3时达到平衡,t4时降低温度,t5时达到平衡,请画出t2~t6CO2的浓度随时间的变化.

              (2)改变温度,使反应CO2(g)+3H2(g)═CH3OH(g)+H2O(g)△H<0  中的所有物质都为气态.起始温度体积相同(T1℃、2L密闭容器).反应过程中部分数据见下表:
              反应时间CO2(mol)H2(mol)CH3OH(mol)H2O(mol)
              反应Ⅰ
              恒温恒容
              0min2600
              10min4.5
              20min1
              30min1
              反应Ⅱ
              绝热恒容
              0min0022
              ①达到平衡时,反应Ⅰ、Ⅱ对比:平衡常数K(Ⅰ)    K(Ⅱ)(填“>”、“<”或“=”下同);平衡时CH3OH的浓度c(Ⅰ)    c(Ⅱ).
              ②对反应I,前10min内的平均反应速率v(CH3OH)=    ,在其它条件不变下,若30min时只改变温度为T2℃,此时H2的物质的量为3.2mol,则T1    T2(填“>”、“<”或“=”).
              若30min时只向容器中再充入1mol CO2(g)和1mol H2O(g),则平衡    移动(填“正向”、“逆向”或“不”).
            • 6. 合成氨反应原理为:N2(g)+3H2(g)=2NH3(g)△H=-92.4kJ/mol.在500℃,20MPa时,将N2和H2通入到一定体积的密闭容器中,反应过程中各物质的物质的量变化如图所示:
              (1)在10~20min内NH3浓度变化的原因可能是    (填字母).
              a.加了催化剂 b.降低温度c.增加NH3物质的量
              (2)该可逆反应达到平衡的标志是    (填字母).
              a.a mol N≡N键断裂的同时,有6a mol N-H键合成
              b.混合气体的密度不再随时间变化
              c.容器内的总压强不再随时间而变化
              d.N2、H2、NH3的分子数之比为1:3:2
              e.单位时间生成m mol N2的同时消耗3m mol H2
              (3)在反应进行到25min时,曲线发生变化的原因是    
              (4)据报道,一定条件下甲烷还原Fe2O3得到的“纳米级”金属铁,可用作合成氨反应的催化剂.其反应为:Fe2O3(s)+3CH4(g)⇌2Fe(s)+3CO(g)+6H2(g) 该反应在5L的密闭容器中进行,2min后达到平衡,测得Fe2O3在反应中质量减少48g.则
              该段时间内H2的平均反应速率为    
            • 7. (2016春•济南校级期中)某温度时,在2L的密闭容器中,X、Y、Z(均为气体)三种物质的量随时间的变化曲线如图所示.
              (1)由图中所给数据进行分析,该反应的化学方程式为    
              (2)反应从开始至2分钟,用Z的浓度变化表示的平均反应速率为v(Z)=    
              (3)2min反应达平衡容器内混合气体的平均相对分子质量比起始时    (填增大、减小或无变化,下同);混合气体密度比起始时    
              (4)将a mol X与b mol Y的混合气体发生上述反应,反应到某时刻各物质的量恰好满足:n (X)=n (Y)=n (Z),则原混合气体中a:b=    
              (5)下列措施能加快反应速率的是    
              A.恒压时充入He     B.恒容时充入He
              C.恒容时充入X      D.及时分离出Z
              E.升高温度          F.选择高效的催化剂
              (6)下列说法正确的是    
              A.升高温度改变化学反应的限度
              B.已知正反应是吸热反应,升高温度平衡向右移动,正反应速率加快,逆反应速率减慢
              C.化学反应的限度与时间长短无关
              D.化学反应的限度是不可能改变的
              E.增大Y的浓度,正反应速率加快,逆反应速率减慢.
            • 8. 1909年化学家哈伯在实验室首次合成了氨.2007年化学家格德•埃特尔在哈伯研究所证实了氢气与氮气在固体表面合成氨的反应过程,示意如下图:

              (1)图⑤表示生成的NH3离开催化剂表面,图②和图③的含义分别是        
              (2)已知:4NH3(g)+3O2(g)=2N2(g)+6H2O(g);△H=-1266.8kJ/mol
              N2(g)+O2(g)=2NO(g);△H=+180.5kJ/mol,
              氨催化氧化的热化学方程式为    
              (3)500℃下,在A、B两个容器中均发生合成氨的反应.隔板Ⅰ固定不动,活塞Ⅱ可自由移动.

              ①当合成氨在容器B中达平衡时,测得其中含有1.0molN2,0.4molH2,0.4molNH3,此时容积为2.0L.则此条件下的平衡常数为    ;保持温度和压强不变,向此容器中通入0.36molN2,平衡将    (填“正向”、“逆向”或“不”)移动.
              ②向A、B两容器中均通入xmolN2和ymolH2,初始A、B容积相同,并保持温度不变.若要平衡时保持N2在A、B两容器中的体积分数相同,则x与y之间必须满足的关系式为    
            • 9. (2016•郑州三模)(一)Fenton法常用于处理含有难降解有机物的工业废水,通常是在调节好pH和Fe2+浓度的废水中加入H2O2,所产生的羟基自由基能氧化降解污染物.现运用该方法降解有机污染物p-CP,探究有关因素对该降解反应速率的影响.实验中控制p-CP的初始浓度相同,恒定实验温度在298K或313K下设计如下对比实验(其余实验条件见下表):
              实验序号实验目的T/KpHc/10-3mol•L-1
              H2O2Fe2+
              为以下实验作参照物29836.00.30
              探究温度对降解反应速率的影响31336.00.30
              298106.00.30
              (1)编号③的实验目的是    
              (2)实验测得不同实验编号中p-CP的浓度随时间变化的关系如图所示.请根据实验①曲线,计算降解反应在50-300s内的平均反应速率v(p-CP)=    
              (3)实验①②表明,温度与该降解反应速率的关系是    
              (二)已知Fe3+和I-在水溶液中的反应为2I-+2Fe3+=2Fe2++I2.正向反应速率和I-、Fe3+的浓度关系为v=kcm(I-)cn(Fe3+)(k为常数)
              (4)请分析下表提供的数据回答以下问题:
              c(I-)/(mol•L-1c(Fe3+)/(mol•L-1v/(mol•L-1•s-1
              (1)0.200.800.032k
              (2)0.600.400.144k
              (3)0.800.200.128k
              ①在v=kcm(I-)cn(Fe3+)中,m、n的值为    .(选填A、B、C、D)
              A.m=1,n=1        B.m=1,n=2       C.m=2,n=1    D.m=2,n=2
              ②I-浓度对反应速率的影响    Fe3+浓度对反应速率的影响(填“<”、“>”或“=”).
              (三)一定温度下,反应FeO(s)+CO(g)⇌Fe(s)+CO2(g)的化学平衡常数为3.0,该温度下将2mol FeO、4mol CO、5mol Fe、6mol CO2加入容积为2L的密闭容器中反应.请通过计算回答:
              (5)v(正)    v(逆)(填“>”、“<”或“=”);若将5mol FeO、4mol CO加入同样的容器中,在相同温度下达到平衡,则CO的平衡转化率为    
            • 10. 氮可形成多种化合物,如NH3、NO2、N2O4等气体.已知NO2和N2O4的结构式分别是.已知:N-N键能为167kJ•mol-1,NO2中N=O键能为466kJ•mol-1,N2O4中N=O键能为438.5kJ•mol-1
              (1)写出N2O4转化为NO2的热化学方程式:    
              (2)在100℃时,将0.40mol的NO2气体充入2L抽空的密闭容器中,每隔一定时间就对该容器内的物质进行分析,得到如下表数据:
              时间(s)020406080
              n(NO2)/mol0.40n10.26n3n4
              n(N2O4)/mol0.000.050n20.0800.080
              ①上述条件下,从反应开始直至20s时,NO2的平均反应速率为    mol•L-1•s-1
              ②n3    n4(填“>”、“<”或“=”),反应2NO2⇌N2O4的平衡常数K的数值为    (精确到小数点后两位),升高温度后,该反应的平衡常数K将    (填“增大”、“减小”或“不变”).
              ③若在相同情况下最初向该容器充入的是N2O4气体,要达到上述同样的平衡状态,N2O4的起始浓度是    mol•L-1
              (3)氨是一种潜在的清洁能源,可用作碱性燃料电池的燃料.电池的总反应为4NH3(g)+3O2(g)=2N2(g)+6H2O(g),则该燃料电池的负极反应式:    
            0/40

            进入组卷