优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              如图,在\(\triangle ABC\)中,\(∠ACB=90^{\circ}\),斜边\(AB\)在\(x\)轴上,点\(C\)在\(y\)轴的正半轴上,直线\(AC\)的解析式是\(y=-2x+4\),则直线\(BC\)的解析式为_________________

            • 2.

              如图,在平面直角坐标系中,抛物线\(y=-\dfrac{1}{3}{{x}^{2}}+x+\dfrac{28}{3}\)与\(x\)轴交于点\(A\)和点\(D(\)点\(A\)在点\(D\)左侧\()\),点\(C\)和点\(B\)在\(y\)轴正半轴上,且\(OC=OA\),\(OB=OD\),将线段\(OB\),\(OD\)分别绕点\(O\)逆时针旋转\(α^{\circ}(0 < α < 90)\)得到\(OB′\),\(OD′\),点\(B\),\(D\)的对应点分别是\(B′\),\(D′\).


              \((1)\)点\(A\)的坐标是________,点\(D\)的坐标是________;

              \((2)\)判断\(AB′\)与\(CD′\)的关系,并说明理由;

              \((3)\)直线\(CD′\)与\(x\)轴相交于点\(N\),当\(\tan ∠B′AN=2\)时\(.\)点\(N\)的坐标是________:

              \((4)\)连接\(BD\),点\(Q\)在\(BD\)上,且\(2BQ=5DQ\),点\(P\)是抛物线上的一点,直线\(PQ\)交\(x\)轴于点\(K\),设\(\triangle BPQ\)的面积为\(S_{1}\),\(\triangle DKQ\)的面积为\(S_{2}\),当\(S_{1}\):\(S_{2}=15\):\(2\)时,直接写出满足条件的点\(P\)的纵坐标.

            • 3.

              如图,在\(Rt\triangle ABC\)中,\(∠ACB=90^{\circ}\),\(AC=2BC\),点\(D\)在边\(AC\)上,连接\(BD\),过点\(A\)作\(BD\)的垂线交\(BD\)的延长线于点\(E\).


              \((1)\) 若\(M\)、\(N\)分别为线段\(AB\)、\(EC\)的中点,如图\(1\),求证:\(MN⊥EC\);

              \((2)\) 如图\(2\),过点\(C\)作\(CF⊥EC\)交\(BD\)于点\(F\),求证:\(AE=2BF\);

              \((3)\) 如图\(3\),在\((2)\)的条件下,若在\(BE\)的延长线上取点\(P\), 使\(∠EAP=∠BAC\),求证:\(PE=BF\)。

            • 4.

              已知:\(l\)\(/\!/\)\(m\)\(/\!/\)\(n\)\(/\!/\)\(k\),平行线\(l\)\(m\)\(m\)\(n\)\(n\)\(k\)之间的距离分别为\(d_{1}\)\(d_{2}\)\(d_{3}\),且\(d_{1}\)\(=\)\(d_{3}\) \(= 1\),\(d_{2}\) \(= 2 .\) 我们把四个顶点分别在\(l\)\(m\)\(n\)\(k\)这四条平行线上的四边形称为“格线四边形”.

              【探究\(1\)】\(⑴\)如图\(1\),正方形\(ABCD\)为“格线四边形”,\(BE\bot l\)于点\(E\)\(BE\)的反向延长线交直线\(k\)于点\(F\)\(.\) 求正方形\(ABCD\)的边长.

              【探究\(2\)】\(⑵\)矩形\(ABCD\)为“格线四边形”,其长:宽 \(= 2\) :\(1\) ,则矩形\(ABCD\)的宽为 \(.(\)直接写出结果即可\()\)

              【探究\(3\)】\(⑶\) 如图\(2\),菱形\(ABCD\)为“格线四边形”且\(∠\)\(ADC\)\(=60^{\circ}\),\(\triangle \)\(AEF\)是等边三角形,\(AE\bot k\) 于点\(E\), \(∠\)\(AFD\)\(=90^{\circ}\),直线\(DF\)分别交直线\(l\)\(k\)于点\(G\)\(M\)\(.\) 求证:\(EC=DF\)

              【拓 展】\(⑷\) 如图\(3\),\(l\)\(/\!/\)\(k\),等边三角形\(ABC\)的顶点\(A\)\(B\)分别落在直线\(l\)\(k\)上,\(AB\bot k\)于点\(B\), 且\(AB\)\(=4\) ,\(∠\)\(ACD\)\(=90^{\circ}\),直线\(CD\)分别交直线\(l\)\(k\)于点\(G\)\(M\),点\(D\)\(E\)分别是线段\(GM\)\(BM\)上的动点,且始终保持\(AD\)\(=\)\(AE\)\(DH\bot l\)于点\(H\)\(.\)猜想:\(DH\)在什么范围内,\(BC\)\(/\!/\)\(DE\)?并说明此时\(BC\)\(/\!/\)\(DE\)的理由.

            • 5.
              如图,已知\(\triangle ABC\)和\(\triangle DEF\),点\(E\)在\(BC\)边上,点\(A\)在\(DE\)边上,边\(EF\)和边\(AC\)相交于点\(G.\)如果\(AE=EC\),\(∠AEG=∠B\),那么添加下列一个条件后,仍无法判定\(\triangle DEF\)与\(\triangle ABC\)一定相似的是\((\)  \()\)
              A.\( \dfrac {AB}{BC}= \dfrac {DE}{EF}\)
              B.\( \dfrac {AD}{AE}= \dfrac {GF}{GE}\)
              C.\( \dfrac {AG}{AC}= \dfrac {EG}{EF}\)
              D.\( \dfrac {ED}{EF}= \dfrac {EG}{EA}\)
            • 6.
              如图,\(P\)是\(Rt\triangle ABC\)的斜边\(BC\)上异于\(B\)、\(C\)的一点,过点\(P\)作直线截\(\triangle ABC\),使截得的三角形与\(\triangle ABC\)相似,满足这样条件的直线共有 ______ 条\(.\)
            • 7.
              如图,在平面直角坐标系中\(xOy\)中,抛物线\(y=-x^{2}+bx+c\)与\(x\)轴相交于点\(A(-1,0)\)和点\(B\),与\(y\)轴相交于点\(C(0,3)\),抛物线的顶点为点\(D\),联结\(AC\)、\(BC\)、\(DB\)、\(DC\).
              \((1)\)求这条抛物线的表达式及顶点\(D\)的坐标;
              \((2)\)求证:\(\triangle ACO\)∽\(\triangle DBC\);
              \((3)\)如果点\(E\)在\(x\)轴上,且在点\(B\)的右侧,\(∠BCE=∠ACO\),求点\(E\)的坐标.
            • 8.

              如图,在\(\triangle ABC\)中,\(∠C=90^{\circ}\),\(AC=BC=2\),点\(D\),\(E\)分别在边\(BC\),\(AB\)上,连接\(AD\),\(ED\),且\(∠BDE=∠ADC.\)过\(E\)作\(EF⊥AD\)交边\(AC\)于点\(F\),连接\(DF\).

              \((1)\)求证:\(∠AEF=∠BED\);

              \((2)\)过\(A\)作\(AG/\!/ED\)交\(BC\)的延长线于点\(G\),设\(CD=x\),\(CF=y\),求\(y\)与\(x\)之间的函数关系式;

              \((3)\)当\(\triangle DEF\)是以\(DE\)为腰的等腰三角形时,求\(CD\)的长.

            • 9.

              如图,在矩形\(ABCD\)中,对角线\(AC\)与\(BD\)相交于点\(O\),点\(E\)是\(BC\)上的一个动点,连接\(DE\),交\(AC\)于点\(F\).

              \((1)\)如图\(①\),当\( \dfrac{CE}{EB} = \dfrac{1}{3} \)时,求\( \dfrac{{S}_{\triangle CEF}}{{S}_{\triangle CDF}} \)的值;



              \((2)\)如图\(②\),当\( \dfrac{CE}{EB} = \dfrac{1}{m} \)时,求\(AF\)与\(OA\)的比值\((\)用含\(m\)的代数式表示\()\);



              \((3)\)如图\(③\),当\( \dfrac{CE}{EB} = \dfrac{1}{m} \)时,过点\(F\)作\(FG⊥BC\)于点\(G\),探索\(EG\)与\(BG\)的数量关系\((\)用含\(m\)的代数式表示\()\),并说明理由.

            • 10.

              如图,在\(Rt\)\(\triangle \)\(ABC\)中,\(∠\)\(C\)\(=90^{\circ}\),\(AB\)\(=12\),点\(P\)为斜边\(AB\)上的一个三等分点,过点\(P\)\(PM\)\(⊥\)\(AC\)\(M\)\(PN\)\(⊥\)\(BC\)\(N\),若四边形\(MPNC\)为正方形,则在\(Rt\)\(\triangle \)\(ABC\)中挖掉正方形\(MPNC\)后,剩余图形面积为                         


            0/40

            进入组卷