优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              用数学归纳法证明“\(1+a+a^{2}+…+a^{2n+1}= \dfrac {1-a^{2n+2}}{1-a}\),\((a\neq 1)\)”,在验证\(n=1\)时,左端计算所得项为\((\)  \()\)
              A.\(1+a+a^{2}+a^{3}+a^{4}\)
              B.\(1+a\)
              C.\(1+a+a^{2}\)
              D.\(1+a+a^{2}+a^{3}\)
            • 2.
              用数学归纳法证明\(1+2+3+…+n^{2}= \dfrac {n^{4}+n^{2}}{2}\),则当\(n=k+1\)时左端应在\(n=k\)的基础上加上\((\)  \()\)
              A.\(k^{2}+1\)
              B.\((k+1)^{2}\)
              C.\( \dfrac {(k+1)^{4}+(k+1)^{2}}{2}\)
              D.\((k^{2}+1)+(k^{2}+2)+(k^{2}+3)+…+(k+1)^{2}\)
            • 3.
              \((1)\)当\(x > 1\)时,求证:\(x^{2}+ \dfrac {1}{x^{2}} > x+ \dfrac {1}{x}\);
              \((2)\)用数学归纳法证明\( \dfrac {1}{n+1}+ \dfrac {1}{n+2}+…+ \dfrac {1}{3n}\geqslant \dfrac {5}{6}(n∈N^{*}).\)
            • 4.
              已知数列\(\{a_{n}\}\)的各项均为正数,其前\(n\)项和为\(S_{n}\),首项\(a_{1}=1\),且\(S_{n}= \dfrac {1}{2}(a_{n}+ \dfrac {1}{a_{n}})\),\(n∈N^{*}\).
              \((1)\)求\(a_{2}\),\(a_{3}\),\(a_{4}\),\(a_{5}\)的值;
              \((2)\)试猜想数列\(\{a_{n}\}\)的通项公式,并用数学归纳法证明.
            • 5.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=1-na_{n}(n∈N^{*})\)
              \((1)\)计算\(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\);
              \((2)\)猜想\(a_{n}\)的表达式,并用数学归纳法证明你的结论.
            • 6.
              在数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}= \dfrac {n+2}{n}a_{n}+1\),其中\(n=1\),\(2\),\(3\),\(…\).
              \((\)Ⅰ\()\) 计算\(a_{2}\),\(a_{3}\),\(a_{4}\),\(a_{5}\)的值;
              \((\)Ⅱ\()\) 根据计算结果,猜想\(\{a_{n}\}\)的通项公式,并用数学归纳法加以证明.
            • 7.
              是否存在常数\(a\),\(b\),\(c\)使等式\(1⋅(n^{2}-1)+2⋅(n^{2}-2^{2})+…+n⋅(n^{2}-n^{2})=n^{2}(an^{2}-b)+c\)对一切\(n∈N^{*}\)都成立?
              并证明的结论.
            • 8.
              已知\((x+1)n=a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+…+a_{n}(x+1)^{n}(n\geqslant 2,n∈N^{*})..\)
              \((1)\)当\(n=3\)时,求\( \dfrac {a_{1}}{2}+ \dfrac {a_{2}}{2^{2}}+ \dfrac {a_{3}}{2^{3}}\)的值;
              \((2)\)设\(b_{n}= \dfrac {a_{n}}{2^{n-2}},T_{n}=b_{2}+b_{3}+…+b_{n}\).
              \(①\)求\(b_{n}\)的表达式;
              \(②\)使用数学归纳法证明:当\(n\geqslant 2\)时,\(T_{n}= \dfrac {n(n+1)(n-1)}{6}\).
            • 9.
              当\(n∈N^{*}\)时,\(S_{n}=1- \dfrac {1}{2}+ \dfrac {1}{3}- \dfrac {1}{4}+…+ \dfrac {1}{2n-1}- \dfrac {1}{2n}\),\(T_{n}= \dfrac {1}{n+1}+ \dfrac {1}{n+2}+ \dfrac {1}{n+3}+…+ \dfrac {1}{2n}\).
              \((\)Ⅰ\()\)求\(S_{1}\),\(S_{2}\),\(T_{1}\),\(T_{2}\);
              \((\)Ⅱ\()\)猜想\(S_{n}\)与\(T_{n}\)的关系,并用数学归纳法证明.
            • 10. 用数学归纳法证明\((1⋅2^{2}-2⋅3^{2})+(3⋅4^{2}-4⋅5^{2})+…+[(2n-1)(2n)^{2}-2n(2n+1)^{2}]=-n(n+1)(4n+3)\).
            0/40

            进入组卷