优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{x_{n}\}\)满足:\(x_{1}=1\),\(x_{n}=x_{n+1}+ \sqrt {x_{n+1}+1}-1\).
              证明:当\(n∈N*\)时,
              \((1)0 < x_{n+1} < x_{n}\);
              \((2)3x_{n+1}-2x_{n} < \dfrac {x_{n}x_{n+1}}{3}\);
              \((3)( \dfrac {2}{3})^{n-1}\leqslant x_{n}\leqslant ( \dfrac {2}{3})^{n-2}\).
            • 2.
              在正项数列\(\{a_{n}\}\)中,已知\(1\leqslant a_{1}\leqslant 11\),\(a_{n+1}^{2}=133-12a_{n}\),\(n∈N^{*}\).
              \((\)Ⅰ\()\)求证:\(1\leqslant a_{n}\leqslant 11\);
              \((\)Ⅱ\()\)设\(b_{n}=n(a_{2n-1}+a_{2n})\),\(S_{n}\)表示数列\(\{b_{n}\}\)前\(n\)项和,求证:\(S_{n}\geqslant 6n(n+1)\);
              \((\)Ⅲ\()\)若\(a_{1}=8\),设\(c_{n}=a_{2n-1}-a_{2n}\),\(T_{n}\)表示数列\(\{c_{n}\}\)前\(n\)项和.
              \((i)\)比较\(a_{n}\)与\(7\)的大小;
              \((ii)\)求证:\(T_{n} < 13\).
            • 3.
              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,\(a_{1}=3\),且\(2S_{n}=a_{n+1}-3(n∈N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)对于正整数\(i\),\(j\),\(k(i < j < k)\),已知\(λa_{j}\),\(6a_{i}\),\(μa_{k}\)成等差数列,求正整数\(λ\),\(μ\)的值;
              \((3)\)设数列\(\{b_{n}\}\)前\(n\)项和是\(T_{n}\),且满足:对任意的正整数\(n\),都有等式\(a_{1}b_{n}+a_{2}b_{n-1}+a_{3}b_{n-2}+…+a_{n}b_{1}=3^{n+1}-3n-3\)成立\(.\)求满足等式\( \dfrac {T_{n}}{a_{n}}= \dfrac {1}{3}\)的所有正整数\(n\).
            • 4.
              已知\(α\)为锐角,且\(\tan α= \sqrt {2}-1\),函数\(f(x)=2x\tan 2α+\sin (2α+ \dfrac {π}{4})\),数列\(\{a_{n}\}\)的首项\(a_{1}=1\),\(a_{n+1}=f(a_{n}).\)
              \((1)\)求函数\(f(x)\)的表达式;
              \((2)\)求证:数列\(\{a_{n}+1\}\)为等比数列;
              \((3)\)求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\).
            • 5.
              设\(\{a_{n}\}\)是首项为\(a_{1}\),公差为\(d\)的等差数列,\(\{b_{n}\}\)是首项为\(b_{1}\),公比为\(q\)的等比数列.
              \((1)\)设\(a_{1}=0\),\(b_{1}=1\),\(q=2\),若\(|a_{n}-b_{n}|\leqslant b_{1}\)对\(n=1\),\(2\),\(3\),\(4\)均成立,求\(d\)的取值范围;
              \((2)\)若\(a_{1}=b_{1} > 0\),\(m∈N*\),\(q∈(1, \sqrt[m]{2}]\),证明:存在\(d∈R\),使得\(|a_{n}-b_{n}|\leqslant b_{1}\)对\(n=2\),\(3\),\(…\),\(m+1\)均成立,并求\(d\)的取值范围\((\)用\(b_{1}\),\(m\),\(q\)表示\()\).
            • 6.
              设函数\(f(x)=(x-t_{1})(x-t_{2})(x-t_{3})\),其中\(t_{1}\),\(t_{2}\),\(t_{3}∈R\),且\(t_{1}\),\(t_{2}\),\(t_{3}\)是公差为\(d\)的等差数列.
              \((\)Ⅰ\()\)若\(t_{2}=0\),\(d=1\),求曲线\(y=f(x)\)在点\((0,f(0))\)处的切线方程;
              \((\)Ⅱ\()\)若\(d=3\),求\(f(x)\)的极值;
              \((\)Ⅲ\()\)若曲线\(y=f(x)\)与直线\(y=-(x-t_{2})-6 \sqrt {3}\)有三个互异的公共点,求\(d\)的取值范围.
            • 7.
              已知数列\(\{a_{n}\}\),设\(\triangle a_{n}=a_{n+1}-a_{n}(n=1,2,3,…)\),若数列\(\{\triangle a_{n}\}\)为单调增数列或常数列时,则\(\{a_{n}\}\)为凸数列.
              \((\)Ⅰ\()\)判断首项\(a_{1} > 0\),公比\(q > 0\),且\(q\neq 1\)的等比数列\(\{a_{n}\}\)是否为凸数列,并说明理由;
              \((\)Ⅱ\()\)若\(\{a_{n}\}\)为凸数列,求证:对任意的\(1\leqslant k < m < n\),且\(k\),\(m\),\(n∈N\),均有\( \dfrac {a_{n}-a_{m}}{n-m}\geqslant a_{m+1}-a_{m}\geqslant \dfrac {a_{m}-a_{k}}{m-k}\),且\(a_{m}\leqslant max\{a_{1},a_{n}\}\);其中\(max\{a_{1},a_{n}\}\)表示\(a_{1}\),\(a_{n}\)中较大的数;
              \((\)Ⅲ\()\)若\(\{a_{n}\}\)为凸数列,且存在\(t(1 < t < n,t∈N)\),使得\(a_{0}\leqslant a_{t}\),\(a_{n}\leqslant a_{t}\),求证:\(a_{1}=a_{2}=…=a_{n}\).
            • 8.
              已知正项等比数列\(\{a_{n}\}\)的公比为\(3\),若\(a_{m}a_{n}=9 a_{ 2 }^{ 2 }\),则\( \dfrac {2}{m}+ \dfrac {1}{2n}\)的最小值等于\((\)  \()\)
              A.\(1\)
              B.\( \dfrac {1}{2}\)
              C.\( \dfrac {3}{4}\)
              D.\( \dfrac {3}{2}\)
            • 9.
              已知数列\(\{a_{n}\}\)满足\(0 < a_{1} < 1\),\(a_{n+1}=a_{n}-\ln (1+a_{n})\),\(n∈N*\).
              \((1)\)证明:\(0 < a_{n} < 1\);
              \((2)\)证明:\(2a_{a+1} < a_{ n }^{ 2 }\);
              \((3)\)若\(a_{1}= \dfrac {1}{2}\),记数列\(\{a_{n}\}\)的前项和为\(S_{n}\),证明:\(S_{n} < \dfrac {3}{4}\).
            • 10. 已知正项等比数列满足:,若存在两项使得,则的最小值为(    )
              A.\(9\)
              B.
              C.
              D.
            0/40

            进入组卷