优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,\(a_{1}=1\),\(a_{2}=3\),数列\(\{a_{n}a_{n+1}\}\)是公比为\(2\)的等比数列,则\(S_{10}=(\)  \()\)
              A.\(1364\)
              B.\( \dfrac {124}{3}\)
              C.\(118\)
              D.\(124\)
            • 2.
              已知二次函数\(f(x)= \dfrac {1}{3}x^{2}+ \dfrac {2}{3}x.\)数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),点\((n,S_{n})(n∈N^{*})\)在二次函数\(y=f(x)\)的图象上.
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}=a_{n}a_{n+1}\cos [(n+1)π](n∈N^{*})\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),若\(T_{n}\geqslant tn^{2}\)对\(n∈N^{*}\)恒成立,求实数\(t\)的取值范围;
              \((\)Ⅲ\()\)在数列\(\{a_{n}\}\)中是否存在这样一些项:\(a\;_{n_{1}}\),\(a\;_{n_{2}}\),\(a\;_{n_{3}}\),\(…\),\(a\;_{n_{k}}\)这些项都能够
              构成以\(a_{1}\)为首项,\(q(0 < q < 5)\)为公比的等比数列\(\{a\;_{n_{k}}\}\)?若存在,写出\(n_{k}\)关于\(f(x)\)的表达式;若不存在,说明理由.
            • 3.
              已知\(a_{1}=1\),\(a_{2}=- \dfrac {1}{1+a_{1}}\),\(a_{3}=- \dfrac {1}{1+a_{2}}\),\(…\),\(a_{n+1}=- \dfrac {1}{1+a_{n}}\),\(….\)那么\(a_{2017}=\) ______ .
            • 4.
              已知数列\(2008\),\(2009\),\(1\),\(-2008\),\(…\)这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前\(2014\)项之和\(S_{2014}\)等于\((\)  \()\)
              A.\(1\)
              B.\(4018\)
              C.\(2010\)
              D.\(0\)
            • 5.
              数列\(\{a_{n}\}\)满足\(a_{n+1}=- \dfrac {1}{1+a_{n}}\),\(a_{1}=1\),记数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\),则\(S_{2017}=\) ______ .
            • 6.
              数列\(\{a_{n}\}\)的前\(n\)项和记为\(S_{n}\)且满足\(S_{n}=2a_{n}-1\),\(n∈N^{*}\);
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(T_{n}=a_{1}a_{2}-a_{2}a_{3}+a_{3}a_{4}-a_{4}a_{5}+…+(-1)^{n+1}a_{n}a_{n+1}\),求\(\{T_{n}\}\)的通项公式;
              \((3)\)设有\(m\)项的数列\(\{b_{n}\}\)是连续的正整数数列,并且满足:\(\lg 2+\lg (1+ \dfrac {1}{b_{1}})+\lg (1+ \dfrac {1}{b_{2}})+…+\lg (1+ \dfrac {1}{b_{m}})=\lg (\log _{2}a_{m}).\)
              问数列\(\{b_{n}\}\)最多有几项?并求出这些项的和.
            • 7.
              已知点\((1, \dfrac {1}{3})\)是函数\(f(x)=a^{x}(a > 0\),且\(a\neq 1)\)的图象上一点,等比数列\(\{a_{n}\}\)的前\(n\)项和为\(f(n)-c\),数列\(\{b_{n}\}(b_{n} > 0)\)的首项和\(S_{n}\)满足\(S_{n}-S_{n-1}= \sqrt {S_{n}}+ \sqrt {S_{n+1}}(n\geqslant 2)\).
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((2)\)若数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和为\(T_{n}\),问\(T_{n} > \dfrac {1000}{2009}\)的最小正整数\(n\)是多少?
            • 8.
              数列\(\{a_{n}\}\)满足\(S_{n}=2n-a_{n}(n∈N^{*}).\)
              \((\)Ⅰ\()\)计算\(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\),并由此猜想通项公式\(a_{n}\);
              \((\)Ⅱ\()\)用数学归纳法证明\((\)Ⅰ\()\)中的猜想.
            • 9.
              已知数列\(\{a_{n}\}\)满足\(S_{n}+a_{n}=2n+1\).
              \((1)\)写出\(a_{1}\),\(a_{2}\),\(a_{3}\),并推测\(a_{n}\)的表达式;
              \((2)\)用数学归纳法证明所得的结论.
            • 10.
              若\(a_{1} > 0\),\(a_{1}\neq 1\),\(a_{n+1}= \dfrac {2a_{n}}{1+a_{n}}(n=1,2,…)\)
              \((1)\)求证:\(a_{n+1}\neq a_{n}\);
              \((2)\)令\(a_{1}= \dfrac {1}{2}\),写出\(a_{2}\)、\(a_{3}\)、\(a_{4}\)、\(a_{5}\)的值,观察并归纳出这个数列的通项公式\(a_{n}\);
              \((3)\)证明:存在不等于零的常数\(p\),使\(\{ \dfrac {a_{n}+P}{a_{n}}\}\)是等比数列,并求出公比\(q\)的值.
            0/40

            进入组卷