优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 设函数 \(f\)\(( \)\(x\)\()\), \(g\)\(( \)\(x\)\()\)在\((3,7)\)上均可导,且\({f}^{,}(x) < {g}^{,}(x) \),则当\(3 < \) \(x\)\( < 7\)时,有(    )
              A.\(f\)\(( \)\(x\)\() > \) \(g\)\(( \)\(x\)\()\)                  
              B.\(f\)\(( \)\(x\)\() < \) \(g\)\(( \)\(x\)\()\)
              C. \(f\)\(( \)\(x\)\()+\) \(g\)\((3) < \) \(g\)\(( \)\(x\)\()+\) \(f\)\((3)\)         
              D.\(f\)\(( \)\(x\)\()+\) \(g\)\((7) < \) \(g\)\(( \)\(x\)\()+\) \(f\)\((7)\)
            • 2.
              若直线\( \dfrac {x}{a}+ \dfrac {y}{b}=1\)通过点\(P(\cos θ,\sin θ)\),则下列不等式正确的是\((\)  \()\)
              A.\(a^{2}+b^{2}\leqslant 1\)
              B.\(a^{2}+b^{2}\geqslant 1\)
              C.\( \dfrac {1}{a^{2}}+ \dfrac {1}{b^{2}}\leqslant 1\)
              D.\( \dfrac {1}{a^{2}}+ \dfrac {1}{b^{2}}\geqslant 1\)
            • 3.

              若\(f\left( x \right)\)是定义在\(\left( -\infty ,+\infty \right)\)上的偶函数,\(\forall {{x}_{1}},{{x}_{2}}\in \left[ 0,+\infty \right)\left( {{x}_{1}}\ne {{x}_{2}} \right)\),有\(\dfrac{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}{{{x}_{2}}-{{x}_{1}}} < 0\),则 \((\)       \()\)

              A.\(f\left( -2 \right) < f\left( 1 \right) < f\left( 3 \right)\)
              B.\(f\left( 1 \right) < f\left( -2 \right) < f\left( 3 \right)\) 
              C.\(f\left( 3 \right) < f\left( 1 \right) < f\left( 2 \right)\)
              D.\(f\left( 3 \right) < f\left( -2 \right) < f\left( 1 \right)\)
            • 4.

              若直线\( \dfrac{x}{a}+ \dfrac{y}{b}=1 \)通过点\(P\left(\cos θ,\sin θ\right) \),则下列不等式正确的是\((\)   \()\)

              A.\({a}^{2}+{b}^{2}\leqslant 1 \)
              B.\({a}^{2}+{b}^{2}\geqslant 1 \)
              C.\( \dfrac{1}{{a}^{2}}+ \dfrac{1}{{b}^{2}}\leqslant 1 \)
              D.\( \dfrac{1}{{a}^{2}}+ \dfrac{1}{{b}^{2}}\geqslant 1 \)
            • 5. 已知数列{an} (n∈N*)满足:a1=1,an+1-sin2θ•an=cos2θ•cos2nθ,其中θ∈(0,
              π
              2
              )

              (1)当θ=
              π
              4
              时,求{an}的通项公式;
              (2)在(1)的条件下,若数列{bn}中,bn=sin
              πan
              2
              +cos
              πan-1
              4
              (n∈N*,n≥2)
              ,且b1=1.求证:对于∀n∈N*,1≤bn
              2
              恒成立;
              (3)对于θ∈(0,
              π
              2
              )
              ,设{an}的前n项和为Sn,试比较Sn+2与
              4
              sin2
              的大小.
            • 6. 已知函数f(x)=1+
              2
              x
              ,数列{xn}满足x1=
              11
              7
              ,xn+1=f(xn);若bn=
              1
              xn-2
              +
              1
              3

              (1)求证数列{bn}是等比数列,并求其通项公式;
              (2)若cn=3n-λbn(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.
            0/40

            进入组卷