优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知等差数列\(\{a_{n}\}\) 的前\(n\)项和为\(S_{n}\),\(a_{1}=λ\) \((\) \(λ > 0\) \()\),\(a_{n+1}=2 \sqrt {S_{n}}+1\) \((n∈N*)\).
              \((I)\)求 \(λ\) 的值;
              \((II)\)求数列\(\{ \dfrac {1}{a_{n}a_{n+1}}\}\) 的前 \(n\)项和\(T_{n}\).
            • 2.
              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,若\(S\;_{n}=2^{n}-1\),则\(a_{4}=\)______
            • 3.
              设数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(a_{n+1}=3a_{n}\),\(n∈N_{+}\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式及前\(n\)项和\(S_{n}\);
              \((\)Ⅱ\()\)已知\(\{b_{n}\}\)是等差数列,且满足\(b_{1}=a_{2}\),\(b_{3}=a_{1}+a_{2}+a_{3}\),求数列\(\{b_{n}\}\)的通项公式.
            • 4.
              已知数列\(\{\{a_{n}\}\)满足\(a_{1}=1,a_{n+1}= \dfrac {a_{n}}{a_{n}+2}\),\(b_{n+1}=(n-λ)( \dfrac {1}{a_{n}}+1)(n∈N^{*}),b_{1}=-λ\).
              \((1)\)求证:数列\(\{ \dfrac {1}{a_{n}}+1\}\)是等比数列;
              \((2)\)若数列\(\{b_{n}\}\)是单调递增数列,求实数\(λ\)的取值范围.
            • 5.

              数列\({{A}_{n}}\)\({{a}_{1}},\,\ {{a}_{2}},\,\ \cdots ,\,\ {{a}_{n}}\,(n\geqslant 4)\)满足:\({{a}_{1}}=1\)\({{a}_{n}}=m\)\({{a}_{k+1}}-{{a}_{k}}=0\)\(1(\,k=1,\,\ 2,\,\ \cdots ,\,\ n-1\,)\)对任意\(i,j\),都存在\(s,t\),使得\({{a}_{i}}+{{a}_{j}}={{a}_{s}}+{{a}_{t}}\),其中\(i,j,s,t\in \{1,2,\cdots ,n\}\)且两两不相等.

              \((\)Ⅰ\()\)若\(m=2\),写出下列三个数列中所有符合题目条件的数列的序号;

                     \(①1,1,1,2,2,2\);  \(②1,1,1,1,2,2,2,2\);  \(③1,1,1,1,1,2,2,2,2\)

              \((\)Ⅱ\()\)记\(S={{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}.\)若\(m=3\),证明:\(S\geqslant 20\);

              \((\)Ⅲ\()\)若\(m=2018\),求\(n\)的最小值.

            • 6.

              已知在数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}=2a_{n}+n-1(n∈N*)\),则其前\(n\)项和\(S_{n}=\)________.

            • 7.

              已知数列\(\left\{{a}_{n}\right\} \)的前\(n\)项和\({S}_{n} \),满足.\({{S}_{n}}=3{{a}_{n}}+{{(-1)}^{n}}(n\in {{N}^{*}})\)

              \((\)Ⅰ\()\)求数列\(\left\{{a}_{n}\right\} \)的前三项\(a_{1}\),\(a_{2}\),\(a_{3};\)

              \((\)Ⅱ\()\)求证:数列\(\left\{ {{a}_{n}}+\dfrac{2}{5}{{(-1)}^{n}} \right\}\)为等比数列,并求出\(\left\{{a}_{n}\right\} \)的通项公式.

            • 8.

              设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(S_{n}=n^{2}+n\),数列\(\{b_{n}\}\)的通项公式为\(b_{n}=x^{n-1}\).

              \((1)\)求数列\(\{a_{n}\}\)的通项公式;

              \((2)\)设\(c_{n}=a_{n}b_{n}\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\).

              \(①\)求\(T_{n}\);

              \(②\)若\(x=2\),求数列\(\{\dfrac{nTn+1-2n}{{{T}_{n+2}}-2}\}\)的最小项的值.

            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}=t(S_{n}-a_{n}+1)(t\)为常数,且\(t\neq 0\),\(t\neq 1)\).
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=a_{n}^{2}+S_{n}a_{n}\),若数列\(\{b_{n}\}\)为等比数列,求\(t\)的值;
              \((3)\)在满足条件\((2)\)的情形下,设\(c_{n}=4a_{n}+1\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),若不等式\( \dfrac {12k}{4+n-T_{n}}\geqslant 2n-7\)对任意的\(n∈N^{*}\)恒成立,求实数\(k\)的取值范围.
            • 10.

              设数列\(\{a_{n}\}\)的首项\(a_{1}=1\),且满足\(a_{2n+1}=2a_{2n-1}\),\(a_{2n}=a_{2n-1}+1\),则数列\(\{a_{n}\}\)的前\(20\)项和\(S_{20}=\)

              A.\(1028\)
              B.\(1280\)
              C.\(2256\)
              D.\(2056\)
            0/40

            进入组卷