优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              在等比数列\(\{a_{n}\}\)中,\(2a_{1}, \dfrac {3}{2}a_{2},a_{3}\)成等差数列,则等比数列\(\{a_{n}\}\)的公比为 ______ .
            • 2.
              已知集合\(P=\{a_{1},a_{2},…,a_{n}\}\),其中\(a_{i}∈R(1\leqslant i\leqslant n,n > 2).M(P)\)表示\(a_{i}+a_{j}(1\leqslant i < j\leqslant n)\)中所有不同值的个数.
              \((\)Ⅰ\()\)若集合\(P=\{1,3,5,7,9\}\),求\(M(P)\);
              \((\)Ⅱ\()\)若集合\(P=\{1,4,16,…,4^{n-1}\}\),求证:\(a_{i}+a_{j}\)的值两两不同,并求\(M(P)\);
              \((\)Ⅲ\()\)求\(M(P)\)的最小值\(.(\)用含\(n\)的代数式表示\()\)
            • 3.
              我国古代数学著作\(《\)九章算术\(》\)有如下问题:“今有蒲\((\)水生植物名\()\)生一日,长三尺;莞\((\)植物名,俗称水葱、席子草\()\)生一日,长一尺\(.\)蒲生日自半,莞生日自倍\(.\)问几何日而长等?”意思是:今有蒲生长\(1\)日,长为\(3\)尺;莞生长\(1\)日,长为\(1\)尺\(.\)蒲的生长逐日减半,莞的生长逐日增加\(1\)倍\(.\)若蒲、莞长度相等,则所需的时间约为 ______ 日\(.(\)结果保留一位小数,参考数据:\(\lg 2≈0.30\),\(\lg 3≈0.48)\)
            • 4.

              对数列\(\{a_{n}\}\),如果\(k∈N^{*}\)及\(λ_{1}\),\(λ_{2}\),\(…\),\(λ_{k}∈R\),使\(a_{n+k}=λ_{1}a_{n+k-1}+λ_{2}a_{n+k-2}+…+λ_{k}a_{n}\)成立,其中\(n∈N^{*}\),则称\(\{a_{n}\}\)为“\(k\)阶递归数列”\(.\)给出下列结论:

              \(①\)若\(\{a_{n}\}\)是等比数列,则\(\{a_{n}\}\)为“\(1\)阶递归数列”;

              \(②\)若\(\{a_{n}\}\)是等差数列,则\(\{a_{n}\}\)为“\(2\)阶递归数列”;

              \(③\)若\(\{a_{n}\}\)的通项公式为\(a_{n}=n^{2}\),则\(\{a_{n}\}\)为“\(3\)阶递归数列”.

              其中正确的结论的个数是

              A.\(0\)
              B.\(1\)
              C.\(2\)
              D.\(3\)
            • 5.

              已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),且\({{a}_{n}}-2{{S}_{n}}=1\).

              \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((2)\)设\(0 < t < s\),\({{T}_{n}}\)为数列\(\left\{ n{{a}_{n}} \right\}\)的前\(n\)项和,问是否存在实数\(\lambda \)使得\(\lambda {{a}_{n}}+\dfrac{s}{{{T}_{n}}} < 3t\)对任意\(n\in {{\mathbf{N}}^{*}}\)恒成立,若不存在,请说明理由;若存在,请求出实数\(\lambda \)的取值范围.

            • 6. 已知单调递增的等比数列\(\{ \)\(a_{n}\)\(\}\)中, \(a\)\({\,\!}_{2}+\) \(a\)\({\,\!}_{3}+\) \(a\)\({\,\!}_{4}=28\),且 \(a\)\({\,\!}_{3}+2\)是 \(a\)\({\,\!}_{2}\), \(a\)\({\,\!}_{4}\)的等差中项,
              \((1)\)求 \(a_{n}\)
              \((2)\)设 \(b_{n}\)\(=\) \(lo\) \(a_{n}\),\(S\) \({\,\!}_{n}\)\(=\) \(b\)\({\,\!}_{1}+\) \(b\)\({\,\!}_{2}+…+\) \(b_{n}\),求\(S\) \({\,\!}_{n}\)
            • 7.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(A_{n}=n^{2}(n∈N^{*}),b_{n}= \dfrac {a_{n}}{a_{n+1}}+ \dfrac {a_{n+1}}{a_{n}}(n∈N^{*})\),数列\(\{b_{n}\}\)的前\(n\)项和为\(B_{n}\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(c_{n}= \dfrac {a_{n}}{2^{n}}(n∈N^{*})\),求数列\(\{c_{n}\}\)的前\(n\)项和\(C_{n}\);
              \((3)\)证明:\(2n < B_{n} < 2n+2(n∈N^{*})\).
            • 8.
              已知等比数列\(\{a_{n}\}\)的公比\(q > 1\),\(a_{1}=2\),且\(a_{1}\),\(a_{2}\),\(a_{3}-8\)成等差数列,数列\(\{a_{n}b_{n}\}\)的前\(n\)项和为 .

              \((1)\)分别求出数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;

              \((2)\)设数列 的前\(n\)项和为\(S_{n}\),已知 ,\(S_{n}\leqslant m\)恒成立,求实数\(m\)的最小值.

            • 9.
              已知等比数列\(\{an\}\)的公比\(q > 1\),\(a_{1}=2\),且\(a_{1}\),\(a_{2}\),\(a_{3}-8\)成等差数列,数列\(\{a_{n}b_{n}\}\)的前\(n\)项和为

              \((1)\)分别求出数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;

              \((2)\)设数列 的前\(n\)项和为\(S_{n}\),已知 ,\(S_{n}\leqslant m\)恒成立,求实数\(m\)的最小值.

            • 10.
              已知等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(a_{2}+a_{4}=6\),\(a_{6}=S_{3}\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)若\(k∈N^{*}\),且\(a_{k}\),\(a_{3k}\),\(S_{2k}\)成等比数列,求\(k\)的值.
            0/40

            进入组卷