优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{x_{n}\}\)满足:\(x_{1}=1\),\(x_{n}=x_{n+1}+ \sqrt {x_{n+1}+1}-1\).
              证明:当\(n∈N*\)时,
              \((1)0 < x_{n+1} < x_{n}\);
              \((2)3x_{n+1}-2x_{n} < \dfrac {x_{n}x_{n+1}}{3}\);
              \((3)( \dfrac {2}{3})^{n-1}\leqslant x_{n}\leqslant ( \dfrac {2}{3})^{n-2}\).
            • 2.
              在正项数列\(\{a_{n}\}\)中,已知\(1\leqslant a_{1}\leqslant 11\),\(a_{n+1}^{2}=133-12a_{n}\),\(n∈N^{*}\).
              \((\)Ⅰ\()\)求证:\(1\leqslant a_{n}\leqslant 11\);
              \((\)Ⅱ\()\)设\(b_{n}=n(a_{2n-1}+a_{2n})\),\(S_{n}\)表示数列\(\{b_{n}\}\)前\(n\)项和,求证:\(S_{n}\geqslant 6n(n+1)\);
              \((\)Ⅲ\()\)若\(a_{1}=8\),设\(c_{n}=a_{2n-1}-a_{2n}\),\(T_{n}\)表示数列\(\{c_{n}\}\)前\(n\)项和.
              \((i)\)比较\(a_{n}\)与\(7\)的大小;
              \((ii)\)求证:\(T_{n} < 13\).
            • 3.
              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,\(a_{1}=3\),且\(2S_{n}=a_{n+1}-3(n∈N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)对于正整数\(i\),\(j\),\(k(i < j < k)\),已知\(λa_{j}\),\(6a_{i}\),\(μa_{k}\)成等差数列,求正整数\(λ\),\(μ\)的值;
              \((3)\)设数列\(\{b_{n}\}\)前\(n\)项和是\(T_{n}\),且满足:对任意的正整数\(n\),都有等式\(a_{1}b_{n}+a_{2}b_{n-1}+a_{3}b_{n-2}+…+a_{n}b_{1}=3^{n+1}-3n-3\)成立\(.\)求满足等式\( \dfrac {T_{n}}{a_{n}}= \dfrac {1}{3}\)的所有正整数\(n\).
            • 4.
              等比数列\(\{a_{n}\}\)的首项为\( \dfrac {3}{2}\),公比为\(- \dfrac {1}{2}\),前\(n\)项和为\(S_{n}\),则当\(n∈N*\)时,\(S_{n}- \dfrac {1}{S_{n}}\)的最大值与最小值的比值为\((\)  \()\)
              A.\(- \dfrac {12}{5}\)
              B.\(- \dfrac {10}{7}\)
              C.\( \dfrac {10}{9}\)
              D.\( \dfrac {12}{5}\)
            • 5.
              已知数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(a_{n+1}=a_{n}+ \dfrac {c}{a_{n}}(c > 0,n∈N*)\),
              \((\)Ⅰ\()\)证明:\(a_{n+1} > a_{n}\geqslant 1\);
              \((\)Ⅱ\()\)若对任意\(n∈N*\),都有\(a_{n}\geqslant (c- \dfrac {1}{2})n-1\)
              证明:\((ⅰ)\)对于任意\(m∈N*\),当\(n\geqslant m\)时,\(a_{n}\leqslant \dfrac {c}{a_{m}}(n-m)+a_{m}\)
              \((ⅱ)a_{n}\leqslant \dfrac { \sqrt {5n-1}}{2}\).
            • 6.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}= \dfrac {n^{2}+n}{2}\),等比数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),若\(b_{1}=a_{1}+1\),\(b_{2}-a_{2}=2\).
              \((1)\)求数列\(\{a_{n}\}\)、\(\{b_{n}\}\)的通项公式;
              \((2)\)求满足\(T_{n}+a_{n} > 300\)的最小的\(n\)值.
            • 7.
              已知\(α\)为锐角,且\(\tan α= \sqrt {2}-1\),函数\(f(x)=2x\tan 2α+\sin (2α+ \dfrac {π}{4})\),数列\(\{a_{n}\}\)的首项\(a_{1}=1\),\(a_{n+1}=f(a_{n}).\)
              \((1)\)求函数\(f(x)\)的表达式;
              \((2)\)求证:数列\(\{a_{n}+1\}\)为等比数列;
              \((3)\)求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\).
            • 8.
              设函数\(f(x)\)定义为如下数表,且对任意自然数\(n\)均有\(x_{n+1}=f(x_{n})\),若\(x_{0}=6\),则\(x_{2018}\)的值为\((\)  \()\)
              \(x\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(…\)
              \(f(x)\) \(5\) \(1\) \(3\) \(2\) \(6\) \(4\) \(…\)
              A.\(1\)
              B.\(2\)
              C.\(4\)
              D.\(5\)
            • 9.
              已知集合\(A=\{x|x=2n-1,n∈N*\}\),\(B=\{x|x=2^{n},n∈N*\}.\)将\(A∪B\)的所有元素从小到大依次排列构成一个数列\(\{a_{n}\}\),记\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和,则使得\(S_{n} > 12a_{n+1}\)成立的\(n\)的最小值为 ______ .
            • 10.
              设\(\{a_{n}\}\)是首项为\(a_{1}\),公差为\(d\)的等差数列,\(\{b_{n}\}\)是首项为\(b_{1}\),公比为\(q\)的等比数列.
              \((1)\)设\(a_{1}=0\),\(b_{1}=1\),\(q=2\),若\(|a_{n}-b_{n}|\leqslant b_{1}\)对\(n=1\),\(2\),\(3\),\(4\)均成立,求\(d\)的取值范围;
              \((2)\)若\(a_{1}=b_{1} > 0\),\(m∈N*\),\(q∈(1, \sqrt[m]{2}]\),证明:存在\(d∈R\),使得\(|a_{n}-b_{n}|\leqslant b_{1}\)对\(n=2\),\(3\),\(…\),\(m+1\)均成立,并求\(d\)的取值范围\((\)用\(b_{1}\),\(m\),\(q\)表示\()\).
            0/40

            进入组卷