优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              正项数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}^{2}-(n^{2}+n-1)S_{n}-(n^{2}+n)=0\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式\(a_{n}\);
              \((2)\)令\(b\;_{n}= \dfrac {n+1}{(n+2)^{2}a_{n}^{2}}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}.\)证明:对于任意\(n∈N^{*}\),都有\(T\;_{n} < \dfrac {5}{64}\).
            • 2.
              已知数列\(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{n+1}=2- \dfrac {1}{a_{n}}\),数列\(\{b_{n}\}\)中,\(b_{n}= \dfrac {1}{a_{n}-1}\),其中\(n∈N^{*}\);
              \((1)\)求证:数列\(\{b_{n}\}\)是等差数列;
              \((2)\)若\(S_{n}\)是数列\(\{b_{n}\}\)的前\(n\)项和,求\( \dfrac {1}{S_{1}}+ \dfrac {1}{S_{2}}+…+ \dfrac {1}{S_{n}}\)的值.
            • 3.
              已知二次函数\(f(x)= \dfrac {1}{3}x^{2}+ \dfrac {2}{3}x.\)数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),点\((n,S_{n})(n∈N^{*})\)在二次函数\(y=f(x)\)的图象上.
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}=a_{n}a_{n+1}\cos [(n+1)π](n∈N^{*})\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),若\(T_{n}\geqslant tn^{2}\)对\(n∈N^{*}\)恒成立,求实数\(t\)的取值范围;
              \((\)Ⅲ\()\)在数列\(\{a_{n}\}\)中是否存在这样一些项:\(a\;_{n_{1}}\),\(a\;_{n_{2}}\),\(a\;_{n_{3}}\),\(…\),\(a\;_{n_{k}}\)这些项都能够
              构成以\(a_{1}\)为首项,\(q(0 < q < 5)\)为公比的等比数列\(\{a\;_{n_{k}}\}\)?若存在,写出\(n_{k}\)关于\(f(x)\)的表达式;若不存在,说明理由.
            • 4.
              若\(a_{1} > 0\),\(a_{1}\neq 1\),\(a_{n+1}= \dfrac {2a_{n}}{1+a_{n}}(n=1,2,…)\).
              \((1)\)求证:\(a_{n+1}\neq a_{n}\);
              \((2)\)令\(a_{1}= \dfrac {1}{2}\),写出\(a_{2}\),\(a_{3}\),\(a_{4}\),\(a_{5}\)的值,观察并归纳出这个数列的通项公式\(a_{n}\),并用数学归纳法证明.
            • 5.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=2a_{n}-2(n=1,2,3…)\),\((a_{n}\neq 0)\),数列\(\{b_{n}\}\)中,\(b_{1}=1\),点\(P(b_{n},b_{n+1})\)在直线\(x-y+2=0\)上.
              \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项\(a_{n}\)和\(b_{n}\);
              \((2)\)设\(c_{n}=a_{n}⋅b_{n}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 6.
              设\(S_{n}\)是数列的前\(n\)项和,已知\(a_{1}=3a_{n+1}=2S_{n}+3(n∈N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)令\(b_{n}=(2n-1)a_{n}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 7.
              设\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,已知\(a_{1}\neq 0,2a_{n}-a_{1}=S_{1}\cdot S_{n},n∈N^{*}\).
              \((1)\)求\(a_{2}\),\(a_{3}\),并求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)求数列\(\{na_{n}\}\)的前\(n\)项和.
            • 8.
              已知函数\(f(x)=x^{2}+(a-1)x+b+1\),当\(x∈[b,a]\)时,函数\(f(x)\)的图象关于\(y\)轴对称,数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=f(n+1)-1\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {a_{n}}{2^{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 9.
              数列\(\{a_{n}\}\)的前\(n\)项和记为\(S_{n}\)且满足\(S_{n}=2a_{n}-1\),\(n∈N^{*}\);
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(T_{n}=a_{1}a_{2}-a_{2}a_{3}+a_{3}a_{4}-a_{4}a_{5}+…+(-1)^{n+1}a_{n}a_{n+1}\),求\(\{T_{n}\}\)的通项公式;
              \((3)\)设有\(m\)项的数列\(\{b_{n}\}\)是连续的正整数数列,并且满足:\(\lg 2+\lg (1+ \dfrac {1}{b_{1}})+\lg (1+ \dfrac {1}{b_{2}})+…+\lg (1+ \dfrac {1}{b_{m}})=\lg (\log _{2}a_{m}).\)
              问数列\(\{b_{n}\}\)最多有几项?并求出这些项的和.
            • 10.
              已知函数\(f(x)= \dfrac {3x}{x+3}\),数列\(\{x_{n}\}\)的通项由\(x_{n}=f(x_{n-1})(n\geqslant 2\)且\(x∈N^{*})\)确定.
              \((1)\)求证:数列\(( \dfrac {1}{x_{n}})\)是等差数列;
              \((2)\)当\(x_{1}= \dfrac {1}{2}\)时,求\(x_{2017}\).
            0/40

            进入组卷