优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知向量\( \overrightarrow{a}=( \dfrac {1}{2}, \dfrac {1}{2}\sin x+ \dfrac { \sqrt {3}}{2}\cos x)\)与 \( \overrightarrow{b}=(1,y)\)共线,设函数\(y=f(x)\).
              \((1)\)求函数\(f(x)\)的周期及最大值;
              \((2)\)已知锐角\(\triangle ABC\)中的三个内角分别为\(A\)、\(B\)、\(C\),若有\(f(A- \dfrac {π}{3})= \sqrt {3}\),边\(BC= \sqrt {7}\),\(\sin B= \dfrac { \sqrt {21}}{7}\),求\(\triangle ABC\)的面积.
            • 2.
              已知向量\( \overrightarrow{a}=(\cos 2x,\sin 2x)\),\( \overrightarrow{b}=( \sqrt {3},1)\),函数\(f(x)= \overrightarrow{a}\cdot \overrightarrow{b}+m\).
              \((1)\)求\(f(x)\)的最小正周期;
              \((2)\)当\(x∈[0, \dfrac {π}{2}]\)时,\(f(x)\)的最小值为\(5\),求\(m\)的值.
            • 3.

              在\(\Delta ABC\)中,角\(A,B,C\)的对边分别为\(a,b,c,\cos C=\dfrac{3}{10}\).

              \((1)\)若\(\overrightarrow{CA}\bullet \overrightarrow{CB}=\dfrac{9}{2}\),求\(\Delta ABC\)的面积;

              \((2)\)设向量\( \overset{⇀}{x}=(2\sin ⁡B,− \sqrt{3}), \overset{⇀}{y}=(\cos ⁡2B,1−2{\sin }^{2} \dfrac{B}{2}) \),且\( \overset{⇀}{x}/\!/ \overset{⇀}{y} \),求角\(B\)的值.

            • 4. 已知平面上三个向量\(\overrightarrow{a}{,}\overrightarrow{b}{,}\overrightarrow{c}\),其中\(\overrightarrow{a}{=}(1{,}2)\).
              \((1)\)若\({|}\overrightarrow{c}{|=}3\sqrt{5}\),且\(\overrightarrow{a}{/\!/}\overrightarrow{c}\),求\(\overrightarrow{c}\)的坐标;
              \((2)\)若\({|}\overrightarrow{b}{|=}3\sqrt{5}\),且\((4\overrightarrow{a}{-}\overrightarrow{b}){⊥}(2\overrightarrow{a}{+}\overrightarrow{b})\),求\(\overrightarrow{a}\)与\(\overrightarrow{b}\)夹角\(\theta\)的余弦值.
            • 5.

              在平面直角坐标系中,点\(O\)为坐标原点,已知向量\(a=(-1,2)\),点\(A(1,0)\),\(B(\cos θ,t)\).

              \((1)\)若向量\(\mathbf{a}\bot \overrightarrow{AB}\),且\(|\overrightarrow{AB}|=\sqrt{5}|\overrightarrow{OA}|\),求向量\(\overrightarrow{OB}\);

              \((2)\)若向量\(a\)与向量\(\overrightarrow{AB}\)共线,求\(\overrightarrow{OB}\cdot \overrightarrow{AB}\)的最小值.

            • 6.

              已知向量\(a\)与\(b\)的夹角为\(\dfrac{2}{3}{ }\!\!\pi\!\!{ }\),\(|a|=2\),\(|b|=3\),记\(m-3a-2b\),\(n=2a+kb\).

              \((1)\)若\(m⊥n\),求实数\(k\)的值;

              \((2)\)是否存在实数\(k\),使得\(m/\!/n?\)说明理由.

            • 7.

              如图,\(O\),\(A\),\(B\)三点不共线,\(\overrightarrow{OC}=2\overrightarrow{OA}\),\(\overrightarrow{OD}=3\overrightarrow{OB}\),设\(\overrightarrow{OA}=a\),\(\overrightarrow{OB}=b\).


              \((1)\)试用\(a\),\(b\)表示向量\(\overrightarrow{OE}\)

              \((2)\)设线段\(AB\),\(OE\),\(CD\)的中点分别为\(L\),\(M\),\(N\),试证明\(L\),\(M\),\(N\)三点共线.

            • 8.

              \((1)\)已知幂函数\(y=f(x)\)的图象经过点\((2,4)\),则这个函数的解析式是______.


              \((2)\)已知\(\cos ( \dfrac{7π}{8} -α)= \dfrac{1}{5} \),则\(\cos ( \dfrac{π}{8} +α)=\)______.


              \((3)\)已知定义在\(R\)上的奇函数\(f(x)\)满足\(f(x+3)=-f(x)\),则\(f(9)=\)______.


              \((4)\)有下列叙述:

              \(①\)若\( \overset{⇀}{a} =(1,k)\),\( \overset{⇀}{b} =(-2,6)\),\( \overset{⇀}{a} /\!/ \overset{⇀}{b} \),则\(k=-3\);

              \(②\)终边在\(y\)轴上的角的集合是\(\{α|α= \dfrac{kπ}{2} ,k∈Z\}\);

              \(③\)已知\(f(x)\)是定义在\(R\)上的不恒为\(0\)的函数,若\(a\),\(b\)是任意的实数,都有\(f(a⋅b)=f(a)+f(b)\),则\(y=f(x)\)的偶函数;

              \(④\)函数\(y=\sin (x- \dfrac{π}{2} )\)在\([0,π]\)上是减函数;

              \(⑤\)已知\(A\)和\(B\)是单位圆\(O\)上的两点,\(∠AOB= \dfrac{2}{3} π\),点\(C\)在劣弧\(\overbrace {AB} \)上,若\( \overset{⇀}{OC} =x \overset{⇀}{OA} +y \overset{⇀}{OB} \),其中,\(x\),\(y∈R\),则\(x+y\)的最大值是\(2\);

              以上叙述正确的序号是______.

            • 9.

              已知向量\( \overrightarrow{a}=\left(\sin θ,\cos θ-2\sin θ\right), \overrightarrow{b}=\left(1,2\right),θ∈\left[0,2π\right] \).

              \((1)\)若\(\overrightarrow{a}/\!/\overrightarrow{b}\),求\(\tan \theta \)的值;

              \((2)\)若\(\overrightarrow{a}\bot \overrightarrow{b}\),求\(\dfrac{1}{2\sin \theta \cos \theta +{{\cos }^{2}}\theta }\)的值;

              \((3)\)若函数\(f(x)={{x}^{2}}+(\overrightarrow{a}\cdot \overrightarrow{b}+3\sin \theta )x-1\)在区间\(x\in [\dfrac{1}{2},+\infty )\)上是增函数,求\(\theta \)的取值范围.

            • 10. 已知向量\(a=(m,1)\),\(b=\left( \left. \dfrac{1}{2}, \dfrac{ \sqrt{3}}{2} \right. \right)\).
              \((1)\)若向量\(a\)与向量\(b\)平行,求实数\(m\)的值;
              \((2)\)若向量\(a\)与向量\(b\)垂直,求实数\(m\)的值;

              \((3)\)若\(a⊥b\),且存在不等于零的实数\(k\),\(t\)使得\([a+(t\)\({\,\!}^{2}\)\(-3)b]⊥(-ka+tb)\),试求\( \dfrac{k+t^{2}}{t}\)的最小值.

            0/40

            进入组卷