优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知数列\(\{x_{n}\}\)满足\({{x}_{1}}=\dfrac{{1}}{{2}}\),\({{x}_{n+1}}=\dfrac{{1}}{{1}+{{x}_{n}}}\),\(n∈N^{*}\).

              \((1)\)猜想数列\(\{x_{2n}\}\)的单调性,并证明你的结论:

              \((2)\)证明:\(|{{x}_{n+1}}-{{x}_{n}}|\leqslant \dfrac{1}{6}{{\left( \dfrac{2}{5} \right)}^{n-1}}\).

            • 2.

              如图,在\(Rt\triangle ABC\)中,\(∠C=90^{\circ}\),设\(a\),\(b\),\(c\)分别表示三条边的长度,由勾股定理,得\(c^{2}=a^{2}+b^{2}.\)类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.

            • 3.

              一个平面用\(n\)条直线去划分,最多将平面分成\(f(n)\)个部分.

              \((1)\) 求\(f(1)\),\(f(2)\),\(f(3)\),\(f(4)\)的值\(;\)

              \((2)\) 观察\(f(2)-f(1)\),\(f(3)-f(2)\),\(f(4)-f(3)\),有何规律\(?\)

              \((3)\) 求\(f(n)\).

            • 4.

              先阅读下列结论的证法,再解决后面的问题:已知\(a_{1}\),\(a_{2}∈R\),\(a_{1}+a_{2}=1\),求证:\(a{\,\!}_{1}^{2}+a{\,\!}_{2}^{2}\geqslant \dfrac{1}{2}.\)证明:构造函数\(f(x)=(x-{a}_{1}{)}^{2} +(x-a_{2})^{2}\),则\(f(x)=2x^{2}-2(a_{1}+a_{2})×a{\,\!}_{1}^{2}+a{\,\!}_{2}^{2}=2x^{2}-2x+a{\,\!}_{1}^{2}+a{\,\!}_{2}^{2}\),因为对一切\(x∈R\),恒有\(f(x)\geqslant 0.\)所以\(\triangle =4-8(a{\,\!}_{1}^{2}+a{\,\!}_{2}^{2})\leqslant 0\),从而得\(a{\,\!}_{1}^{2}+a{\,\!}_{2}^{2}\geqslant \dfrac{1}{2}\).

              \((1)\)若\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}∈R\)且\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}∈R\),\(a_{1}+a_{2}+…+a_{n}=1\),请写出上述结论的推广式;

              \((2)\)参考上述解法,对你推广的结论加以证明.

            • 5.

              已知在\(Rt\triangle ABC\)中,\(AB⊥AC\),\(AD⊥BC\)于\(D\),有\( \dfrac{1}{A{D}^{2}}= \dfrac{1}{A{B}^{2}}+ \dfrac{1}{A{C}^{2}} \)成立\(.\)那么在四面体\(A—BCD\)中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由.

               


            • 6.

              设平面上\(n\)个圆周最多把平面分成\(f(n)\)片\((\)平面区域\()\),则\(f(2)=\)________,\(f(n)=\)________\((n\geqslant 1,n∈N^{*}).\)

            • 7. 已知函数\(f(x){=}\dfrac{x^{2}}{1{+}x^{2}}\).
              \((1)\)分别求\(f(2){+}f(\dfrac{1}{2}){,}f(3){+}f(\dfrac{1}{3}){,}f(4){+}f(\dfrac{1}{4})\)的值,并归纳猜想一般性结论\((\)不要求证明\()\);
              \((2)\)求值:\(2f(2){+}2f(3){+…+}2f(2017){+}f(\dfrac{1}{2}){+}f(\dfrac{1}{3}){+…}f(\dfrac{1}{2017}){+}\dfrac{1}{2^{2}}f(2){+}\dfrac{1}{3^{2}}f(3){+…+}\dfrac{1}{2017^{2}}{⋅}f(2017)\).
            • 8. \((1)\)已知函数\(f(x)=\dfrac{ax+1}{x+2}\)在\((-2,+\infty )\)内单调递减,求实数\(a\)的取值范围是                     

              \((2)\)\(\int_{1}^{e}{({{2}^{x}}-\dfrac{e}{x}})dx =\)                

              \((3)\)如图是网络工作者经常用来解释网络运作的蛇形模型:数字\(1\)出现在第\(1\)行\(;\)数字\(2,3\)出现在第\(2\)行\(;\)数字\(6,5,4(\)从左至右\()\)出现在第\(3\)行\(;\)数字\(7,8,9,10\)出现在第\(4\)行,依此类推,則第\(20\)行从左至右的第\(4\)个数字应是      


              \((4)\)已知是定义在\(R\)上的函数,且满足\(①f(4)=0\);\(②\)曲线\(y=f(x+1)\)关于点\((-1,0)\)对称;\(③\)当\(x\in (-4,0)\)时,\(f(x)={{\log }_{2}}(\dfrac{x}{{{e}^{|x|}}}+{{e}^{x}}-m+1)\),若\(y=f(x)\)在\(x\in [-4,4]\)上有\(5\)个零点,则实数\(m\)的取值范围为         

            • 9. 已知\(\{a_{n}\}\)为等差数列,且\(a_{n}\neq 0\),公差\(d\neq 0\).
              \((\)Ⅰ\()\)证明:\( \dfrac { C_{ 2 }^{ 0 }}{a_{1}}- \dfrac { C_{ 2 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 2 }^{ 2 }}{a_{3}}= \dfrac {2d^{2}}{a_{1}a_{2}a_{3}}\)
              \((\)Ⅱ\()\)根据下面几个等式:\( \dfrac {1}{a_{1}}- \dfrac {1}{a_{2}}= \dfrac {d}{a_{1}a_{2}}\);\( \dfrac { C_{ 2 }^{ 0 }}{a_{1}}- \dfrac { C_{ 2 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 2 }^{ 2 }}{a_{3}}= \dfrac {2d^{2}}{a_{1}a_{2}a_{3}}\);\( \dfrac { C_{ 3 }^{ 0 }}{a_{1}}- \dfrac { C_{ 3 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 3 }^{ 2 }}{a_{3}}- \dfrac { C_{ 3 }^{ 3 }}{a_{4}}= \dfrac {6d^{3}}{a_{1}a_{2}a_{3}a_{4}}\)

              ;\( \dfrac { C_{ 4 }^{ 0 }}{a_{1}}- \dfrac { C_{ 4 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 4 }^{ 2 }}{a_{3}}- \dfrac { C_{ 4 }^{ 3 }}{a_{4}}+ \dfrac { C_{ 4 }^{ 4 }}{a_{5}}= \dfrac {24d^{4}}{a_{1}a_{2}a_{3}a_{4}a_{5}}\),\(…\)
              试归纳出更一般的结论,并用数学归纳法证明.
            • 10.

              求下列数列的一个通项公式:

              \((1)3\),\(5\),\(9\),\(17\),\(33\),\(...\),

              \((2)1,0,- \dfrac{1}{3},0, \dfrac{1}{5},0,- \dfrac{1}{7},0,..., \)

              \((3) \dfrac{2}{3}, \dfrac{4}{15}, \dfrac{6}{35}, \dfrac{8}{63}, \dfrac{10}{,99},..., \)

              \((4)1\),\(3\),\(6\),\(10\),\(15\),\(21\),\(...\),

            0/40

            进入组卷