优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              阿波罗尼斯\((\)约公元前\(262-190\)年\()\)证明过这样一个命题:平面内到两定点距离之比为常数\(k(k > 0\)且\(k\neq 1)\)的点的轨迹是圆\(.\)后人将这个圆称为阿氏圆\(.\)若平面内两定点\(A\),\(B\)间的距离为\(2\),动点\(P\)与\(A\),\(B\)距离之比为\( \sqrt {2}\),当\(P\),\(A\),\(B\)不共线时,\(\triangle PAB\)面积的最大值是\((\)  \()\)
              A.\(2 \sqrt {2}\)
              B.\( \sqrt {2}\)
              C.\( \dfrac {2 \sqrt {2}}{3}\)
              D.\( \dfrac { \sqrt {2}}{3}\)
            • 2.
              当点\(P\)在圆\(x^{2}+y^{2}=1\)上变动时,它与定点\(Q(3,0)\)相连,线段\(PQ\)的中点\(M\)的轨迹方程是\((\)  \()\)
              A.\((x-3)^{2}+y^{2}=1\)
              B.\((2x-3)^{2}+4y^{2}=1\)
              C.\((x+3)^{2}+y^{2}=4\)
              D.\((2x+3)^{2}+4y^{2}=4\)
            • 3.
              在平面直角坐标系中,已知顶点\(A(0,- \sqrt {2})\)、\(B(0, \sqrt {2})\),直线\(PA\)与直线\(PB\)的斜率之积为\(-2\),则动点\(P\)的轨迹方程为\((\)  \()\)
              A.\( \dfrac {y^{2}}{2}+x^{2}=1\)
              B.\( \dfrac {y^{2}}{2}+x^{2}=1(x\neq 0)\)
              C.\( \dfrac {y^{2}}{2}-x^{2}=1\)
              D.\( \dfrac {y^{2}}{2}+x^{2}=1(y\neq 0)\)
            • 4.
              动点\(A\)在圆\(x^{2}+y^{2}=1\)上移动时,它与定点\(B(3,0)\)连线的中点的轨迹方程是\((\)  \()\)
              A.\((x+3)^{2}+y^{2}=4\)
              B.\((x-3)^{2}+y^{2}=1\)
              C.\((2x-3)^{2}+4y^{2}=1\)
              D.\((x+3)^{2}+y^{2}= \dfrac {1}{2}\)
            • 5.
              已知圆\(O\)的方程为 \(x^{2}+y^{2}=9\),若抛物线\(C\)过点\(A(-1,0)\),\(B(1,0)\),且以圆\(O\)的切线为准线,则抛物线\(C\)的焦点\(F\)的轨迹方程为\((\)  \()\)
              A.\( \dfrac {x^{2}}{9}- \dfrac {y^{2}}{8}=1(x\neq 0)\)
              B.\( \dfrac {x^{2}}{9}+ \dfrac {y^{2}}{8}=1(x\neq 0)\)
              C.\( \dfrac {x^{2}}{9}- \dfrac {y^{2}}{8}=1(y\neq 0)\)
              D.\( \dfrac {x^{2}}{9}+ \dfrac {y^{2}}{8}=1(y\neq 0)\)
            • 6.
              已知动点\(P\)在曲线\(2y^{2}-x=0\)上移动,则点\(A(-2,0)\)与点\(P\)连线中点的轨迹方程是\((\)  \()\)
              A.\(y=2x^{2}\)
              B.\(y=8x^{2}\)
              C.\(x=4y^{2}-1\)
              D.\(y=4x^{2}- \dfrac {1}{2}\)
            • 7.
              已知平面\(ABCD⊥\)平面\(ADEF\),\(AB⊥AD\),\(CD⊥AD\),且\(AB=1\),\(AD=CD=2\),\(ADEF\)是正方形,在正方形\(ADEF\)内部有一点\(M\),满足\(MB\)、\(MC\)与平面\(ADEF\)所成的角相等,则点\(M\)的轨迹长度为\((\)  \()\)
              A.\( \dfrac {4}{3}\)
              B.\( \dfrac {16}{3}\)
              C.\( \dfrac {4}{9}π\)
              D.\( \dfrac {8}{3}π\)
            • 8.
              设定点\(F_{1}(0,2)\),\(F_{2}(0,-2)\),动点\(P\)满足条件\(|PF_{1}|+|PF_{2}|=a+ \dfrac {4}{a}(a > 0)\),则点\(P\)的轨迹是\((\)  \()\)
              A.椭圆
              B.线段
              C.不存在
              D.椭圆或线段
            • 9.
              已知动点\(M(x,y)\)的坐标满足方程\( \sqrt {(y+5)^{2}+x^{2}}- \sqrt {(y-5)^{2}+x^{2}}=8\),则\(M\)的轨迹方程是\((\)  \()\)
              A.\( \dfrac {x^{2}}{16}+ \dfrac {y^{2}}{9}=1\)
              B.\( \dfrac {x^{2}}{16}- \dfrac {y^{2}}{9}=1\)
              C.\( \dfrac {x^{2}}{16}- \dfrac {y^{2}}{9}=1(x > 0)\)
              D.\( \dfrac {y^{2}}{16}- \dfrac {x^{2}}{9}=1(y > 0)\)
            • 10.
              已知定点\(F_{1}(-2,0)\)与\(F_{2}(2,0)\),动点\(M\)满足\(|MF_{1}|-|MF_{2}|=4\),则点\(M\)的轨迹方程是\((\)  \()\)
              A.\( \dfrac {x^{2}}{16}- \dfrac {y^{2}}{12}=1\)
              B.\( \dfrac {x^{2}}{4}- \dfrac {y^{2}}{12}=0(x\geqslant 2)\)
              C.\(y=0(|x|\geqslant 2)\)
              D.\(y=0(x\geqslant 2)\)
            0/40

            进入组卷