优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              在直角坐标系\(xOy\)中,曲线\({{C}_{1}}:\begin{cases} & x=3\cos \theta \\ & y=2\sin \theta \end{cases}\)\((θ\)为参数\()\),在以\(O\)为极点,\(x\)轴的正半轴为极轴的极坐标系中,曲线\(C\)\({\,\!}_{2}\):\(ρ-2\cos θ=0\).

              \((\)Ⅰ\()\)求曲线\(C_{2}\)的普通方程;

              \((\)Ⅱ\()\)若曲线\(C_{1}\)上有一动点\(M\),曲线\(C_{2}\)上有一动点\(N\),求\(|MN|\)的最小值.

            • 2.
              将曲线\(y=\sin 2x\)按照伸缩变换\( \begin{cases} \overset{x{{"}}=2x}{y{{"}}=3y}\end{cases}\)后得到的曲线方程为\((\)  \()\)
              A.\(y=3\sin x\)
              B.\(y=3\sin \) \(2x\)
              C.\(y=3\sin \dfrac {1}{2}x\)
              D.\(y= \dfrac {1}{3}\sin \) \(2x\)
            • 3.

              方程\({x}^{2}+{y}^{2}=4 \)经过变换\(φ:\begin{cases}x{{{"}}}=4x \\ y{{{"}}}=3y\end{cases} \)得到方程\((\)   \()\)

              A.\(16{x}^{2}+9{y}^{2}=4 \)
              B.\(16x{{{{"}}}}^{2}+9y{{{{"}}}}^{2}=4 \)
              C.\(\dfrac{x{{{{"}}}}^{2}}{16}+ \dfrac{y{{{{"}}}}^{2}}{9}=4 \)
              D.\(\dfrac{{x}^{2}}{16}+ \dfrac{{y}^{2}}{9}=4 \)
            • 4.
              曲线\(C\)经过伸缩变换\( \begin{cases}x′= \dfrac {1}{2}x \\ y′=3y\end{cases}\)后,对应曲线的方程为:\(x{{"}}^{2}+y{{"}}^{2}=1\),则曲线\(C\)的方程为\((\)  \()\)
              A.\( \dfrac {x^{2}}{4}+9y^{2}=1\)
              B.\(4x^{2}+ \dfrac {y^{2}}{9}=1\)
              C.\( \dfrac {x^{2}}{4}+ \dfrac {y^{2}}{9}=1\)
              D.\(4x^{2}+9y^{2}=1\)
            • 5.

              I.在直角坐标版权法\(xOy\)中,直线\(l\)的参数方程为\(\begin{cases}x=3+ \dfrac{1}{2}t \\ y= \dfrac{ \sqrt{3}}{2}t\end{cases} \)\((t\)为参数\()\),以原点为极点,\(x\)轴的正半轴为极轴建立极坐标系,\(⊙C \)的极坐标方程为\(ρ=2 \sqrt{3}\sin θ \)

              \((1)\)写出\(⊙C \)的直角坐标方程;

              \((2)P\)为直线\(l\)上一动点,当\(P\)到圆心\(C\)的距离最小时,求点\(P\)的坐标.


              \(II.\) 已知函数\(f\left(x\right)=\left|2x-a\right|+a \)

              \((1)\)当\(a=2\)时,求不等式\(f\left(x\right)⩽6 \)的解集;

              \((2)\)设函数\(g\left(x\right)=\left|2x-1\right| \),当\(x∈R \)时,\(f\left(x\right)+g\left(x\right)⩾3 \),求\(a\)的取值范围.

            • 6.

              如图,在平面直角坐标系的格点\((\)横、纵坐标均为整数的点\()\)处:点\((1,0)\)处标\(b_{1}\),点\((1,-1)\)处标\(b_{2}\),点\((0,-1)\)处标\(b_{3}\),点\((-1,-1)\)处标\(b_{4}\),点\((-1,0)\)处标\(b_{5}\),点\((-1,1)\)处标\(b_{6}\),点\((0,1)\)处标\(b_{7}\),\(…\),以此类推,则\(b_{963}\)处的格点的坐标为________.


            • 7.
              在同一平面直角坐标系中,将直线\(x+y+2=0\)变成直线\(8x+y+8=0\),写出满足条件的伸缩变换公式 ______ .
            • 8. 在平行四边形\(ABCD\)中,用坐标法证明:\(|AB|\)\({\,\!}^{2}\)\(+|BC|\)\({\,\!}^{2}\)\(+|CD|\)\({\,\!}^{2}\)\(+|DA|\)\({\,\!}^{2}\)\(=|AC|\)\({\,\!}^{2}\)\(+|BD|\)\({\,\!}^{2}\)
            • 9.

              已知曲线\(C\)的极坐标方程是\(\rho =2\),以极点为原点,极轴为\(x\)轴的正半轴建立平面直角坐标系,直线\(l\)的参数方程为\(\left\{ \begin{matrix} x=2-\dfrac{1}{2}t \\ y=1+\dfrac{\sqrt{3}}{2}t \\ \end{matrix}(t \right.\)为参数\()\) .

              \((\)Ⅰ\()\)写出直线\(l\)与曲线\(C\)在直角坐标系下的方程;

              \((\)Ⅱ\()\)设曲线\(C\)经过伸缩变换\(\begin{cases} {x}{{{'}}}=x \\ {y}{{{'}}}=2y \end{cases}\),得到曲线\({C}{{{'}}}\),设曲线\({C}{{{'}}}\)上任一点为\(M({{x}_{0}},{{y}_{0}})\),求\(\sqrt{3}{{x}_{0}}+\dfrac{1}{2}{{y}_{0}}\)的取值范围.

            • 10.

              点\(M\)的直角坐标是\(\left( -1,\sqrt{3} \right)\),则点\(M\)的极坐标为\((\)    \()\)

              A.\(\left( 2,\dfrac{\pi }{3} \right)\)
              B.\(\left( 2,-\dfrac{\pi }{3} \right)\)
              C.\(\left( 2,\dfrac{2\pi }{3} \right)\)
              D.\(\left( 2,2k\pi +\dfrac{\pi }{3} \right),\left( k\in Z \right)\)
            0/40

            进入组卷