优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知等差数列\(\{a_{n}\}\)满足\(a_{1}+a_{2}=10\),\(a_{4}-a_{3}=2\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设等比数列\(\{b_{n}\}\)满足\(b_{2}=a_{3}\),\(b_{3}=a_{7}\),问:\(b_{6}\)与数列\(\{a_{n}\}\)的第几项相等?
            • 2.
              已知等差数列\(\{a_{n}\}\)的首项为\(a\),公差为\(b\),等比数列\(\{b_{n}\}\)的首项为\(b\),公比为\(a\).
              \((\)Ⅰ\()\)若数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=-n^{2}+3n\),求\(a\),\(b\)的值;
              \((\)Ⅱ\()\)若\(a∈N^{+}\),\(b∈N^{+}\),且\(a < b < a_{2} < b_{2} < a_{3}\).
              \((i)\)求\(a\)的值;
              \((ii)\)对于数列\(\{a_{n}\}\)和\(\{b_{n}\}\),满足关系式\(a_{n}+k=b_{n}\),\(k\)为常数,且\(k∈N^{+}\),求\(b\)的最大值.
            • 3.
              已知数列\(\{a_{n}\}\)是公比为\( \dfrac {1}{3}\)的等比数列,且\(a_{2}+6\)是\(a_{1}\)和\(a_{3}\)的等差中项.
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设数列\(\{a_{n}\}\)的前\(n\)项之积为\(T_{n}\),求\(T_{n}\)的最大值.
            • 4.
              设等比数列\(\{a_{n}\}\)满足\(a_{n} > 0\),且\(a_{1}+a_{3}= \dfrac {5}{16}\),\(a_{2}+a_{4}= \dfrac {5}{8}\),则\(\log _{2}(a_{1}a_{2}…a_{n})\)的最小值为 ______ .
            • 5.
              设同时满足条件:\(①b_{n}+b_{n+2}\geqslant 2b_{n+1}\);\(②b_{n}\leqslant M(n∈N^{*},M\)是常数\()\)的无穷数列\(\{b_{n}\}\)叫“欧拉”数列\(.\)已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\((a-1)S_{n}=a(a_{n}-1)(a\)为常数,且\(a\neq 0\),\(a\neq 1)\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {S_{n}}{a_{n}}+1\),若数列\(\{b_{n}\}\)为等比数列,求\(a\)的值,并证明数列\(\{ \dfrac {1}{b_{n}}\}\)为“欧拉”数列.
            • 6.
              已知\(\{a_{n}\}\)是等比数列,满足\(a_{1}=3\),\(a_{4}=24\),数列\(\{a_{n}+b_{n}\}\)是首项为\(4\),公差为\(1\)的等差数列.
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((2)\)求数列\(\{b_{n}\}\)的前\(n\)项和.
            • 7.
              已知各项都为整数的等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),若\(S_{5}=35\),且\(a_{2}\),\(a_{3}+1\),\(a_{6}\)成等比数列.
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {a_{n}}{3^{n}}\),且数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < \dfrac {5}{4}\).
            • 8.
              已知\(\{a_{n}\}\)是等比数列,满足\(a_{1}=2\),且\(a_{2}\),\(a_{3}+2\),\(a_{4}\)成等差数列.
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}=2na_{n}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),\(g(n)= \dfrac {2n^{2}-9n+7}{S_{n}-4}(n\geqslant 2,n∈N^{*})\),求正整数\(k\)的值,使得对任意\(n\geqslant 2\)均有\(g(k)\geqslant g(n)\).
            • 9.
              已知等差数列\(\{a_{n}\}\)的首项\(a_{1}=-2\),等比数列\(\{b_{n}\}\)的公比为\(q\),且\(a_{2}=b_{1}\),\(a_{3}=b_{2}+1\),\(a_{1}b_{2}+5b_{2}=b_{3}\).
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)通项公式;
              \((2)\)求数列\(\{a_{n}b_{n}\}\)的前\(n\)项的和\(S_{n}\).
            • 10.
              设\(\{a_{n}\}\)是公差比为\(q\)的等比数列.
              \((\)Ⅰ\()\)推导\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)公式\((\)用\(a_{1}\),\(q\)表示\()\);
              \((\)Ⅱ\()\)若\(S_{3}\),\(S_{9}\),\(S_{6}\)成等差数列,求证\(a_{2}\),\(a_{8}\),\(a_{5}\)成等差数列.
            0/40

            进入组卷