优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知\(x\),\(y\),\(z\)均为实数.
              \((1)\)求证:\(1+2x^{4}\geqslant 2x^{3}+x^{2}\);
              \((2)\)若\(x+2y+3z=6\),求\(x^{2}+y^{2}+z^{2}\)的最小值.
            • 2.
              已知实数\(x\),\(y\)满足\(x^{2}+3y^{2}=1\),求当\(x+y\)取最大值时\(x\)的值.
            • 3.
              已知正数\(x\),\(y\),\(z\)满足\(x^{2}+y^{2}+z^{2}=6\).
              \((1)\)求\(x+2y+z\)的最大值;
              \((2)\)若不等式\(|a+1|-2a\geqslant x+2y+z\)对满足条件的\(x\),\(y\),\(z\)恒成立,求实数\(a\)的取值范围.
            • 4.

              设\(a\),\(b\),\(c\)为正数,且\(a+2b+3c=13\),则\(\sqrt{3a}+\sqrt{2b}+\sqrt{c}\)的最大值为\((\)    \()\)

              A.\(\dfrac{169}{3}\)
              B.\(\dfrac{13}{3}\)
              C.\(\dfrac{13\sqrt{3}}{3}\)
              D.\(\sqrt{13}\)
            • 5.

              若\(a\),\(b\),\(c\),\(d\)都是实数,求证:\((a^{2}+b^{2})(c^{2}+d^{2})\geqslant (ac+bd)^{2}\),当且仅当\(ad=bc\)时,等号成立.

            • 6.

              已知正数\(x\),\(y\),\(z\)满足\(x^{2}+y^{2}+z^{2}=6\).

              \((\)Ⅰ\()\)求\(x+2y+z\)的最大值;

              \((\)Ⅱ\()\)若不等式\(|a+1|-2a\geqslant x+2y+z\)对满足条件的\(x\),\(y\),\(z\)恒成立,求实数\(a\)的取值范围.

            • 7.
              设\(a\),\(b\),\(c\),\(x\),\(y\),\(z\)是正数,且\(a^{2}+b^{2}+c^{2}=10\),\(x^{2}+y^{2}+z^{2}=40\),\(ax+by+cz=20\),则\( \dfrac {a+b+c}{x+y+z}=(\)  \()\)
              A.\( \dfrac {1}{4}\)
              B.\( \dfrac {1}{3}\)
              C.\( \dfrac {1}{2}\)
              D.\( \dfrac {3}{4}\)
            • 8.

              若实数\(x+y+z=1\),则\(2x^{2}+y^{2}+3z^{2}\) 的最小值为\((\)  \()\)

              A.\(1\)     
              B.\(\dfrac{2}{3} \)
              C.\(\dfrac{6}{11} \)
              D.\(11\)
            • 9.

              已知\(x\),\(y\),\(z∈R\),且\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1\),则\(x+\dfrac{y}{2}+\dfrac{z}{3}\)的最小值是\((\)    \()\)

              A.\(5\)
              B.\(6\)
              C.\(8\)
              D.\(9\)
            • 10.

              已知\(x\),\(y\),\(z\)均为实数\(.\)若\(x+y+z=1\),求证:\( \sqrt{3x+1}+ \sqrt{3y+2}+ \sqrt{3z+3}\leqslant 3 \sqrt{3}\).

            0/40

            进入组卷