优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知点\(P_{n}(a_{n},b_{n})\)满足\(a_{n+1}=a_{n}·b_{n+1}\),\({{b}_{n+1}}=\dfrac{{{b}_{n}}}{1-4a_{n}^{2}}(n\in {{N}^{*}})\),且点\(P_{1}\)的坐标为\((1,-1)\),

              \((1)\)求过点\(P_{1}\),\(P_{2}\)的直线\(l\)的方程;

              \((2)\)试用数学归纳法证明:对于\(n∈N^{*}\),点\(P_{n}\)都在\((1)\)中的直线\(l\)上.

            • 2.

              设正项数列\(\left\{{a}_{n}\right\} \)的前\(n\)项和为\({S}_{n} \),且满足\({S}_{n}= \dfrac{1}{2}{{a}_{n}}^{2}+ \dfrac{n}{2}\left(n∈N*\right) \).

              \((1)\)计算\({a}_{1}\;,\;{a}_{2\;},\;{a}_{3} \)的值,并猜想\(\left\{{a}_{n}\right\} \)的通项公式;

              \((2)\)用数学归纳法证明\(\left\{{a}_{n}\right\} \)的通项公式.

            • 3.

              用数学归纳法证明\(1+ \dfrac{1}{2}+ \dfrac{1}{3}+⋯+ \dfrac{1}{{2}^{n}-1} < n\left(n∈{N}^{*}且n > 1\right) \),第一步即证不等式________________________成立.

            • 4.

              设\(i\)为虚数单位,\(n\)为正整数,\(θ∈[0,2π)\).

              \((1)\)用数学归纳法证明:\((\cos θ+i \sin θ)\)”\(=\cos nθ+i \sin nθ\);

              \((2)\)已知\(z=\sqrt{3}+i\),试利用\((1)\)的结论计算\(z^{10}\);

              \((3)\)设复数\(z=a+bi(a,b∈R,a^{2}+b^{2}\neq 0)\),求证:\(\left| {{z}^{n}} \right|={{\left| z \right|}^{n}}(n∈N﹡)\).

            • 5.

              用数学归纳法证明“\(3^{4n+1}+5^{2n+1}\left( \left. n∈N \right. \right)\)能被\(8\)整除”时,当\(n=k+1\)时,对于\(3^{4(k+1)+1}+5^{2(k+1)+1}\)可变形为\((\)  \()\)

              A.\(56·3^{4k+1}+25\left( \left. 3^{4k+1}+5^{2k+1} \right. \right)\)
              B.\(3^{4k+1}+5^{2k+1}\)
              C.\(3^{4}×3^{4k+1}+5^{2}×5^{2k+1}\)
              D.\(25\left( \left. 3^{4k+1}+5^{2k+1} \right. \right)\)
            • 6. 利用数学归纳法证明“\((n+1)(n+2)…(n+n)=2^{n}×1×3×…×(2n-1)\),\(n∈N^{*}\)”时,从“\(n=k\)”变到“\(n=k+1\)”时,左边应增乘的因式是 ______ .
            • 7. 已知\(\{a_{n}\}\)为等差数列,且\(a_{n}\neq 0\),公差\(d\neq 0\).
              \((\)Ⅰ\()\)证明:\( \dfrac { C_{ 2 }^{ 0 }}{a_{1}}- \dfrac { C_{ 2 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 2 }^{ 2 }}{a_{3}}= \dfrac {2d^{2}}{a_{1}a_{2}a_{3}}\)
              \((\)Ⅱ\()\)根据下面几个等式:\( \dfrac {1}{a_{1}}- \dfrac {1}{a_{2}}= \dfrac {d}{a_{1}a_{2}}\);\( \dfrac { C_{ 2 }^{ 0 }}{a_{1}}- \dfrac { C_{ 2 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 2 }^{ 2 }}{a_{3}}= \dfrac {2d^{2}}{a_{1}a_{2}a_{3}}\);\( \dfrac { C_{ 3 }^{ 0 }}{a_{1}}- \dfrac { C_{ 3 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 3 }^{ 2 }}{a_{3}}- \dfrac { C_{ 3 }^{ 3 }}{a_{4}}= \dfrac {6d^{3}}{a_{1}a_{2}a_{3}a_{4}}\)

              ;\( \dfrac { C_{ 4 }^{ 0 }}{a_{1}}- \dfrac { C_{ 4 }^{ 1 }}{a_{2}}+ \dfrac { C_{ 4 }^{ 2 }}{a_{3}}- \dfrac { C_{ 4 }^{ 3 }}{a_{4}}+ \dfrac { C_{ 4 }^{ 4 }}{a_{5}}= \dfrac {24d^{4}}{a_{1}a_{2}a_{3}a_{4}a_{5}}\),\(…\)
              试归纳出更一般的结论,并用数学归纳法证明.
            • 8. 用数学归纳法证明:\(1+ \dfrac {1}{1+2}+ \dfrac {1}{1+2+3}+…+ \dfrac {1}{1+2+3+…+n}= \dfrac {2n}{n+1}\)时,由\(n=k\)到\(n=k+1\)左边需要添加的项是\((\)  \()\)
              A.\( \dfrac {1}{k(k+2)}\)
              B.\( \dfrac {1}{k(k+1)}\)
              C.\( \dfrac {1}{(k+1)(k+2)}\)
              D.\( \dfrac {2}{(k+1)(k+2)}\)
            • 9. 用数学归纳法证明不等式\(1+ \dfrac {1}{2^{3}}+ \dfrac {1}{3^{3}}+…+ \dfrac {1}{n^{3}} < 2- \dfrac {1}{n}(n\geqslant 2,n∈N_{+})\)时,第一步应验证不等式\((\)  \()\)
              A.\(1+ \dfrac {1}{2^{3}} < 2- \dfrac {1}{2}\)
              B.\(1+ \dfrac {1}{2^{3}}+ \dfrac {1}{3^{3}} < 2- \dfrac {1}{3}\)
              C.\(1+ \dfrac {1}{2^{3}} < 2- \dfrac {1}{3}\)
              D.\(1+ \dfrac {1}{2^{3}}+ \dfrac {1}{3^{3}} < 2- \dfrac {1}{4}\)
            • 10. 已知点\(P_{n}(a_{n},b_{n})\)满足\(a_{n+1}=a_{n}⋅b_{n+1}\),\(b_{n+1}= \dfrac {b_{n}}{1-4 a_{ n }^{ 2 }}(n∈N^{*})\)且点\(P_{1}\)的坐标为\((1,-1)\).
              \((1)\)求过点\(P_{1}\),\(P_{2}\)的直线\(l\)的方程;
              \((2)\)试用数学归纳法证明:对于\(n∈N^{*}\),点\(P_{n}\)都在\((1)\)中的直线\(l\)上.
            0/40

            进入组卷