优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)满足\(a_{n+1}+(-1)^{n}a_{n}= \dfrac {n+5}{2}(n∈N^{*})\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\).
              \((1)\)求\(a_{1}+a_{3}\)的值;
              \((2)\)若\(a_{1}+a_{5}=2a_{3}\).
              \(①\)求证:数列\(\{a_{2n}\}\)为等差数列;
              \(②\)求满足\(S_{2p}=4S_{2m}(p,m∈N^{*})\)的所有数对\((p,m)\).
            • 2.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{n}+n=2a_{n}(n∈N*)\).
              \((1)\)证明:数列\(\{a_{n}+1\}\)为等比数列,并求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}=na_{n}+n\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求满足不等式\( \dfrac {T_{n}-2}{n} > 2018\)的\(n\)的最小值.
            • 3.
              设\(S_{n}\)为正项数列\(\{a_{n}\}\)的前\(n\)项和,满足\(2S_{n}=a \;_{ n }^{ 2 }+a_{n}-2\).
              \((I)\)求\(\{a_{n}\}\)的通项公式;
              \((II)\)若不等式\((1+ \dfrac {2}{a_{n}+t})\;^{a_{n}}\geqslant 4\)对任意正整数\(n\)都成立,求实数\(t\)的取值范围;
              \((III)\)设\(b_{n}=e\;^{ \frac {3}{4}a_{n}\ln (n+1)}(\)其中\(r\)是自然对数的底数\()\),求证:\( \dfrac {b_{1}}{b_{3}}+ \dfrac {b_{2}}{b_{4}}+..+ \dfrac {b_{n}}{b_{n+2}} < \dfrac { \sqrt {6}}{6}\).
            • 4.
              已知数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(|a_{n+1}-a_{n}|=p^{n}\),\(n∈N*\).
              \((1)\)若\(p=1\),写出\(a_{4}\)的所有值;
              \((2)\)若数列\(\{a_{n}\}\)是递增数列,且\(a_{1}\),\(2a_{2}\),\(3a_{3}\)成等差数列,求\(p\)的值;
              \((3)\)若\(p= \dfrac {1}{2}\),且\(\{a_{2n-1}\}\)是递增数列,\(\{a_{2n}\}\)是递减数列,求数列\(\{a_{n}\}\)的通项公式.
            • 5.
              设数列\(\{a_{n}\}\)满足\(a_{0}= \dfrac {1}{2}\),\(a_{n+1}=a_{n}+ \dfrac { a_{ n }^{ 2 }}{2018}(n=0,1,2…)\),若使得\(a_{k} < 1 < a_{k+1}\),则正整数\(k=\) ______ .
            • 6.
              若\(\{c_{n}\}\)是递增数列,数列\(\{a_{n}\}\)满足:对任意\(n∈N^{*}\),存在\(m∈N^{*}\),使得\( \dfrac {a_{m}-c_{n}}{a_{m}-c_{n+1}}\leqslant 0\),则称\(\{a_{n}\}\)是\(\{c_{n}\}\)的“分隔数列”
              \((1)\)设\(c_{n}=2n\),\(a_{n}=n+1\),证明:数列\(\{a_{n}\}\)是\(\{c_{n}\}\)的分隔数列;
              \((2)\)设\(c_{n}=n-4\),\(S_{n}\)是\(\{c_{n}\}\)的前\(n\)项和,\(d_{n}=c_{3n-2}\),判断数列\(\{S_{n}\}\)是否是数列\(\{d_{n}\}\)的分隔数列,并说明理由;
              \((3)\)设\(c_{n}=aq^{n-1}\),\(T_{n}\)是\(\{c_{n}\}\)的前\(n\)项和,若数列\(\{T_{n}\}\)是\(\{c_{n}\}\)的分隔数列,求实数\(a\),\(q\)的取值范围.
            • 7.
              在平面直角坐标系中,点列\(P_{n}(x_{n},y_{n})(n∈N^{+})\)的坐标满足 \(x_{1}=0\),\(y_{1}=1\),\( \begin{cases} \overset{x_{n+1=}y_{n}+x_{n}}{y_{n+1}=y_{n}-x_{n}}\end{cases}\),设\(a_{n}=|P_{n}P_{n+1}|\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),那么\(S_{8}\)的值为\((\)  \()\)
              A.\(15(2- \sqrt {2})\)
              B.\(15(2+ \sqrt {2})\)
              C.\(15( \sqrt {2}+1)\)
              D.\(15( \sqrt {2}-1)\)
            • 8.
              对任意数列\(A\):\(a_{1}\),\(a_{2}\),\(a_{3}\),\(…\),\(a_{n}\),\(…\),定义\(\triangle A\)为数列\(a_{2}-a_{1}\),\(a_{3}-a_{2}\),\(a_{4}-a_{3}\),\(…\),\(a_{n+1}-a_{n}\),\(…\),如果数列\(A\)使得数列\(\triangle (\triangle A)\)的所有项都是\(1\),且\(a_{12}=a_{22}=0\),则\(a_{2}=\) ______ .
            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{n}=2a_{n}-n\).
              \((1)\)求证\(\{a_{n}+1\}\)为等比数列;
              \((2)\)求数列\(\{S_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 10.
              设数列\(\{a_{n}\}\)满足\(a \;_{ n }^{ 2 }=a_{n+1}a_{n-1}+λ(a_{2}-a_{1})^{2}\),其中\(n\geqslant 2\),且\(n∈N\),\(λ\)为常数.
              \((1)\)若\(\{a_{n}\}\)是等差数列,且公差\(d\neq 0\),求\(λ\)的值;
              \((2)\)若\(a_{1}=1\),\(a_{2}=2\),\(a_{3}=4\),且存在\(r∈[3,7]\),使得\(m⋅a_{n}\geqslant n-r\)对任意的\(n∈N*\)都成立,求\(m\)的最小值;
              \((3)\)若\(λ\neq 0\),且数列\(\{a_{n}\}\)不是常数列,如果存在正整数\(T\),使得\(a_{n+T}=a_{n}\)对任意的\(n∈N*\)均成立\(.\)求所有满足条件的数列\(\{a_{n}\}\)中\(T\)的最小值.
            0/40

            进入组卷