优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 已知数列\(\{a_{n}\}\)与\(\{b_{n}\}\)满足\(a_{n+1}-a_{n}=2(b_{n+1}-b_{n})\),\(n∈N^{*}\).
              \((1)\)若\(b_{n}=3n+5\),且\(a_{1}=1\),求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(\{a_{n}\}\)的第\(n_{0}\)项是最大项,即\(a_{n\_{0}}\geqslant a_{n}(n∈N*)\),求证:\(\{b_{n}\}\)的第\(n_{0}\)项是最大项;
              \((3)\)设\(a_{1}=3λ < 0\),\(b_{n}=λ^{n}(n∈N^{*})\),求\(λ\)的取值范围,使得对任意\(m\),\(n∈N^{*}\),\(a_{n}\neq 0\),且\( \dfrac {a_{m}}{a_{n}}∈( \dfrac {1}{6},6)\).
            • 2. 为等差数列, ,公差 ,则使前 项和 取得最大值时 \(=(\)    \()\)
              A.\(4\)或\(5\)      
              B.\(5\)或\(6\)        
              C.\(6\)或\(7\)       
              D.\(8\)或\(9\)
            • 3.

              已知数列\(\{a_{n}\}\)满足\({{a}_{n+1}}=\dfrac{1}{1-{{a}_{n}}}(n∈N*)\),\(a_{8}=2\),则\(a_{1}\)的值为\((\)    \()\)

              A.\(-1\)
              B.\(1\)
              C.\(\dfrac{1}{2}\).
              D.\(2.\)
            • 4.

              数列\(\{ a_{n}\}\)的通项公式为\(a_{n}{=}{-}2n^{2}{+}\lambda n(n{∈}N^{{*}}{,}\lambda{∈}R)\),若\(\{ a_{n}\}\)是递减数列,则\(\lambda\)的取值范围是

              A.\(({-∞}{,}4)\)
              B.\(({-∞}{,}4{]}\)
              C.\(({-∞}{,}6)\)
              D.\(({-∞}{,}6{]} \)
            • 5.

              已知等差数列\(\{{{a}_{n}}\}\)中,公差\(d\ne 0\)\({{S}_{7}}=35\),且\({{a}_{2}}\)\({{a}_{5}}\)\({{a}_{11}}\)成等比数列.

              \((1)\)求数列\(\{{{a}_{n}}\}\)的通项公式;

              \((2)\)若\({{T}_{n}}\)为数列\(\{\dfrac{1}{{{a}_{n}}{{a}_{n+1}}}\}\)的前\(n\)项和,且存在\(n\in {{\mathrm{N}}^{*}}\),使得\({{T}_{n}}-\lambda {{a}_{n+1}}\geqslant 0\)成立,求实数\(\lambda \)的取值范围.

            • 6. 设数列\(\{a\)\({\,\!}_{n}\)\(\}\)的各项都为正数,其前\(n\)项和为\(S\)\({\,\!}_{n}\),已知对任意\(n∈N\)\({\,\!}^{*}\),\(S\)\({\,\!}_{n}\)是\(a\)\(\rlap{_{n}}{^{2}}\)和\(a\)\({\,\!}_{n}\)的等差中项.
              \((1)\)证明:数列\(\{a\)\({\,\!}_{n}\)\(\}\)为等差数列;

              \((2)\)若\(b\)\({\,\!}_{n}\)\(=-n+5\),求\(\{a\)\({\,\!}_{n}\)\(·b\)\({\,\!}_{n}\)\(\}\)的最大项的值并求出取最大值时\(n\)的值.

            • 7.

              已知函数\(f(x)=\dfrac{3x}{ax+b}\),\(f(1)=1\),\(f(\dfrac{1}{2})=\dfrac{3}{4}\),数列\(\{x_{n})\)满足\({{x}_{1}}=\dfrac{3}{2}\),\(x_{n+1}=f(x_{n}).\)

              \((1)\)求\(x_{2}\),\(x_{3}\)的值;

              \((2)\)求数列\(\{x_{n}\}\)的项公式;

              \((3)\)证明:\(\dfrac{{{x}_{1}}}{3}+\dfrac{{{x}_{2}}}{{{3}^{2}}}+...+\dfrac{{{x}_{n}}}{{{3}^{n}}} < \dfrac{3}{4}\).

            • 8.

              已知数列\(\{a_{n}\}\)的各项均为正整数,其前\(n\)项和为\(S_{n}\),若\(a_{n+1}=\begin{cases} \dfrac{a_{n}}{2},a_{n}是偶数 \\ 3a_{n}+1,a_{n}是奇数 \end{cases}\),且\(a_{1}=5\),则\(S_{2\;018}=(\)  \()\)

              A.\(4 740\)                                                
              B.\(4 732\)

              C.\(12 095\)                                               
              D.\(12 002\)
            • 9.

              已知首项为\(\dfrac{3}{2}\)的等比数列\(\{{{a}_{n}}\}\)的前\(n\)项和为\({{S}_{n}}\),\((n\in {{N}^{*}})\),且\(-2{{S}_{2}},{{S}_{3}},4{{S}_{4}}\)成等差数列,

              \((\)Ⅰ\()\)求数列\(\{{{a}_{n}}\}\)的通项公式;

              \((\)Ⅱ\()\)求\({{S}_{n}}(n\in {{N}^{*}})\)的最值.

            • 10.

              数列\(\left\{ {{a}_{n}} \right\}\)满足\({a}_{n+1}=\begin{cases}2{a}_{n},(0\leqslant {a}_{n} < \dfrac{1}{2}) \\ 2{a}_{n}-1,( \dfrac{1}{2}\leqslant {a}_{n} < 1)\end{cases} \),若\({{a}_{1}}=\dfrac{3}{5}\),则\({{a}_{2014}}=\)(    )

              A.\(\dfrac{1}{5}\)
              B.\(\dfrac{2}{5}\)
              C.\(\dfrac{3}{5}\)
              D.\(\dfrac{4}{5}\)
            0/40

            进入组卷