优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              设等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{2014} > 0\),\(S_{2015} < 0\),对任意正整数\(n\),都有\(|a_{n}|\geqslant |a_{k}|\),则\(k\)的值为\((\)  \()\)
              A.\(1006\)
              B.\(1007\)
              C.\(1008\)
              D.\(1009\)
            • 2.
              函数\(y= \sqrt {9-(x-5)^{2}}\)的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是\((\)  \()\)
              A.\( \dfrac {3}{4}\)
              B.\( \sqrt {2}\)
              C.\( \sqrt {3}\)
              D.\( \sqrt {5}\)
            • 3.
              已知数列\(\{a_{n}\}\)中\(a_{1}=1\),前\(n\)项和为\(S_{n}\),若对任意的\(n∈N*\),均有\(S_{n}=a_{n+k}-k(k\)是常数,且\(k∈N*)\)成立,则称数列\(\{a_{n}\}\)为“\(H(k)\)数列”.
              \((1)\)若数列\(\{a_{n}\}\)为“\(H(1)\)数列”,求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\);
              \((2)\)若数列\(\{a_{n}\}\)为“\(H(2)\)数列”,且\(a_{2}\)为整数,试问:是否存在数列\(\{a_{n}\}\),使得\(|a \;_{ n }^{ 2 }-a_{n-1}a_{n+1}|\leqslant 40\)对一切\(n\geqslant 2\),\(n∈N*\)恒成立?如果存在,求出这样数列\(\{a_{n}\}\)的\(a_{2}\)的所有可能值,如果不存在,请说明理由;
              \((3)\)若数列\(\{a_{n}\}\)为“\(H(k)\)数列”,且\(a_{1}=a_{2}=…=a_{k}=1\),证明:\(a_{n+2k}\geqslant (1+ \dfrac {1}{2^{k-1}})^{n-k}\).
            • 4.
              如果\(n\)项有穷数列\(\{a_{n}\}\)满足\(a_{1}=a_{n}\),\(a_{2}=a_{n-1}\),\(…\),\(a_{n}=a_{1}\),即\(a_{i}=a_{n-i+1}(i=1,2,…,n)\),则称有穷数列\(\{a_{n}\}\)为“对称数列”\(.\)例如,由组合数组成的数列\( C_{ n }^{ 0 }, C_{ n }^{ 1 },…, C_{ n }^{ n-1 }, C_{ n }^{ n }\)就是“对称数列”.
              \((\)Ⅰ\()\)设数列\(\{b_{n}\}\)是项数为\(7\)的“对称数列”,其中\(b_{1}\),\(b_{2}\),\(b_{3}\),\(b_{4}\)成等比数列,且\(b_{2}=3\),\(b_{5}=1.\)依次写出数列\(\{b_{n}\}\)的每一项;
              \((\)Ⅱ\()\)设数列\(\{c_{n}\}\)是项数为\(2k-1(k∈N^{*}\)且\(k\geqslant 2)\)的“对称数列”,且满足\(|c_{n+1}-c_{n}|=2\),记\(S_{n}\)为数列\(\{c_{n}\}\)的前\(n\)项和;
              \((ⅰ)\)若\(c_{1}\),\(c_{2}\),\(…c_{k}\)是单调递增数列,且\(c_{k}=2017.\)当\(k\)为何值时,\(S_{2k-1}\)取得最大值?
              \((ⅱ)\)若\(c_{1}=2018\),且\(S_{2k-1}=2018\),求\(k\)的最小值.
            • 5. 已知数列\(\{a_{n}\}\)与\(\{b_{n}\}\)满足\(a_{n+1}-a_{n}=2(b_{n+1}-b_{n})\),\(n∈N^{*}\).
              \((1)\)若\(b_{n}=3n+5\),且\(a_{1}=1\),求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(\{a_{n}\}\)的第\(n_{0}\)项是最大项,即\(a_{n\_{0}}\geqslant a_{n}(n∈N*)\),求证:\(\{b_{n}\}\)的第\(n_{0}\)项是最大项;
              \((3)\)设\(a_{1}=3λ < 0\),\(b_{n}=λ^{n}(n∈N^{*})\),求\(λ\)的取值范围,使得对任意\(m\),\(n∈N^{*}\),\(a_{n}\neq 0\),且\( \dfrac {a_{m}}{a_{n}}∈( \dfrac {1}{6},6)\).
            • 6.

              已知数列\(\left\{ {{a}_{n}} \right\}\)满足:\({{a}_{1}}=3\),\({{a}_{n+1}}=\dfrac{1}{1-{{a}_{n}}}\),则\({{a}_{2020}}=(\)    \()\)

              A. \(3\)
              B.\(-\dfrac{1}{2}\)
              C.\(\dfrac{2}{3}\)
              D.\(\dfrac{3}{2}\)
            • 7. 为等差数列, ,公差 ,则使前 项和 取得最大值时 \(=(\)    \()\)
              A.\(4\)或\(5\)      
              B.\(5\)或\(6\)        
              C.\(6\)或\(7\)       
              D.\(8\)或\(9\)
            • 8.

              己知数列\(\{a_{n}\}\)满足\({{a}_{n}}=\begin{cases} & (1-3a)n+10a,n\leqslant 6 \\ & {{a}^{n-7}},n < 6 \end{cases}(n∈N^{+})\),若\(\{a_{n}\}\)是递减数列,则实数\(a\)的取值范围是\((\)    \()\)

              A.\((\dfrac{1}{3},1)\)
              B.\((\dfrac{1}{3},\dfrac{1}{2})\)
              C.\((\dfrac{5}{8},1)\)
              D.\((\dfrac{1}{3},\dfrac{5}{8})\)
            • 9.

              已知数列\(\{a_{n}\}\)满足\({{a}_{n+1}}=\dfrac{1}{1-{{a}_{n}}}(n∈N*)\),\(a_{8}=2\),则\(a_{1}\)的值为\((\)    \()\)

              A.\(-1\)
              B.\(1\)
              C.\(\dfrac{1}{2}\).
              D.\(2.\)
            • 10.

              已知数列\(\{a_{n}\}\)的通项公式\({a}_{n}=\left(n+2\right)·{\left( \dfrac{3}{4}\right)}^{n} \),则数列\(\{a_{n}\}\)的项取最大值时,\(n=\)_____.

            0/40

            进入组卷