优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知实数\(a\),\(b\),\(c\)成等比数列,\(a+6\),\(b+2\),\(c+1\)成等差数列,则\(b\)的最大值为 ______ .
            • 2.
              对于数列\(A\):\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}\),若满足\(a_{i}∈\{0,1\}(i=1\),\(2\),\(3\),\(…\),\(n)\),则称数列\(A\)为“\(0-1\)数列”\(.\)若存在一个正整数\(k(2\leqslant k\leqslant n-1)\),若数列\(\{a_{n}\}\)中存在连续的\(k\)项和该数列中另一个连续的\(k\)项恰好按次序对应相等,则称数列\(\{a_{n}\}\)是“\(k\)阶可重复数列”,例如数列\(A\):\(0\),\(1\),\(1\),\(0\),\(1\),\(1\),\(0.\)因为\(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\)与\(a_{4}\),\(a_{5}\),\(a_{6}\),\(a_{7}\)按次序对应相等,所以数列\(\{a_{n}\}\)是“\(4\)阶可重复数列”.
              \((\)Ⅰ\()\)分别判断下列数列\(A\):\(1\),\(1\),\(0\),\(1\),\(0\),\(1\),\(0\),\(1\),\(1\),\(1.\)是否是“\(5\)阶可重复数列”?如果是,请写出重复的这\(5\)项;
              \((\)Ⅱ\()\)若项数为\(m\)的数列\(A\)一定是“\(3\)阶可重复数列”,则\(m\)的最小值是多少?说明理由;
              \((III)\)假设数列\(A\)不是“\(5\)阶可重复数列”,若在其最后一项\(a_{m}\)后再添加一项\(0\)或\(1\),均可使新数列是“\(5\)阶可重复数列”,且\(a_{4}=1\),求数列\(\{a_{n}\}\)的最后一项\(a_{m}\)的值.
            • 3.
              定义“有增有减”数列\(\{a_{n}\}\)如下:\(∃t∈N^{*}\),满足\(a_{t} < a_{t+1}\),且\(∃s∈N^{*}\),满足\(a_{S} > a_{S+1}.\)已知“有增有减”数列\(\{a_{n}\}\)共\(4\)项,若\(a_{i}∈\{x,y,z\}(i=1\),\(2\),\(3\),\(4)\),且\(x < y < z\),则数列\(\{a_{n}\}\)共有\((\)  \()\)
              A.\(64\)个
              B.\(57\)个
              C.\(56\)个
              D.\(54\)个
            • 4.
              在\(n×n(n\geqslant 2)\)个实数组成的\(n\)行\(n\)列的数表中,\(a_{i,j}\)表示第\(i\)行第\(j\)列的数,记\(r_{i}=a_{i1}+a_{i2}+…+a_{in}(1\leqslant i\leqslant n).c_{j}=a_{1j}+a_{2j}+…+a_{nj}(1\leqslant j\leqslant n)\)若\(a_{i,j}∈\{-1,0,1\}\) \(((1\leqslant i,j\leqslant n))\),且\(r_{1}\),\(r_{2}\),\(…\),\(r_{n}\),\(c_{1}\),\(c_{2}\),\(..\),\(c_{n}\),两两不等,则称此表为“\(n\)阶\(H\)表”,记\(H=\{\) \(r_{1}\),\(r_{2}\),\(…\),\(r_{n}\),\(c_{1}\),\(c_{2}\),\(..\),\(c_{n}\}.\)
              \((I)\)请写出一个“\(2\)阶\(H\)表”;
              \((II)\)对任意一个“\(n\)阶\(H\)表”,若整数\(λ∈[-n,n]\),且\(λ∉H_{n}\),求证:\(λ\)为偶数;
              \((\)Ⅲ\()\)求证:不存在“\(5\)阶\(H\)表”.
            • 5.
              数列\(A_{n}\):\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}(n\geqslant 4)\)满足:\(a_{1}=1\),\(a_{n}=m\),\(a_{k+1}-a_{k}=0\)或\(1(k=1,2,…,n-1).\)对任意\(i\),\(j\),都存在\(s\),\(t\),使得\(a_{i}+a_{j}=a_{s}+a_{t}\),其中\(i\),\(j\),\(s\),\(t∈\{1,2,…,n\}\)且两两不相等.
              \((\)Ⅰ\()\)若\(m=2\),写出下列三个数列中所有符合题目条件的数列的序号;
              \(①1\),\(1\),\(1\),\(2\),\(2\),\(2\);\(②1\),\(1\),\(1\),\(1\),\(2\),\(2\),\(2\),\(2\);\(③1\),\(1\),\(1\),\(1\),\(1\),\(2\),\(2\),\(2\),\(2\)
              \((\)Ⅱ\()\)记\(S=a_{1}+a_{2}+…+a_{n}.\)若\(m=3\),证明:\(S\geqslant 20\);
              \((\)Ⅲ\()\)若\(m=2018\),求\(n\)的最小值.
            • 6.
              设等比数列\(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\)的公比为\(q\),等差数列\(b_{1}\),\(b_{2}\),\(b_{3}\),\(b_{4}\)的公差为\(d\),且\(q\neq 1\),\(d\neq 0.\)记\(c_{i}=a_{i}+b_{i}(i=1,2,3,4)\).
              \((1)\)求证:数列\(c_{1}\),\(c_{2}\),\(c_{3}\)不是等差数列;
              \((2)\)设\(a_{1}=1\),\(q=2.\)若数列\(c_{1}\),\(c_{2}\),\(c_{3}\)是等比数列,求\(b_{2}\)关于\(d\)的函数关系式及其定义域;
              \((3)\)数列\(c_{1}\),\(c_{2}\),\(c_{3}\),\(c_{4}\)能否为等比数列?并说明理由.
            • 7.
              对于任一实数序列\(A=\{a_{1},a_{2},a_{3}…\}\),定义\(\triangle A\)为序列\(\{a_{2}-a_{1},a_{3}-a_{2},a_{4}-a_{3},…\}\),它的第\(n\)项是\(a_{n+1}-a_{n}\),假定序列\(\triangle (\triangle A)\)的所有项都是\(1\),且\(a_{18}=a_{2017}=0\),则\(a_{2018}=\) ______ .
            • 8.
              给定无穷数列\(\{a_{n}\}\),若无穷数列\(\{b_{n}\}\)满足:对任意\(n∈N^{*}\),都有\(|b_{n}-a_{n}|\leqslant 1\),则称\(\{b_{n}\}\)与\(\{a_{n}\}\)“接近”.
              \((1)\)设\(\{a_{n}\}\)是首项为\(1\),公比为\( \dfrac {1}{2}\)的等比数列,\(b_{n}=a_{n+1}+1\),\(n∈N^{*}\),判断数列\(\{b_{n}\}\)是否与\(\{a_{n}\}\)接近,并说明理由;
              \((2)\)设数列\(\{a_{n}\}\)的前四项为:\(a_{1}=1\),\(a_{2}=2\),\(a_{3}=4\),\(a_{4}=8\),\(\{b_{n}\}\)是一个与\(\{a_{n}\}\)接近的数列,记集合\(M=\{x|x=b_{i},i=1,2,3,4\}\),求\(M\)中元素的个数\(m\);
              \((3)\)已知\(\{a_{n}\}\)是公差为\(d\)的等差数列,若存在数列\(\{b_{n}\}\)满足:\(\{b_{n}\}\)与\(\{a_{n}\}\)接近,且在\(b_{2}-b_{1}\),\(b_{3}-b_{2}\),\(…\),\(b_{201}-b_{200}\)中至少有\(100\)个为正数,求\(d\)的取值范围.
            • 9.
              已知数列\(A\):\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}(n\geqslant 2)\)满足\(a_{i}∈N^{*}\)且\(1\leqslant a_{i}\leqslant i(i=1,2,…,n)\),数列\(B\):\(b_{1}\),\(b_{2}\),\(…\),\(b_{n}(n\geqslant 2)\)满足\(b_{i}=τ(a_{i})+1(i=1,2,…,n)\),其中\(τ(a_{1})=0\),\(τ(a_{i})(i=1,2,…,n)\)表示\(a_{1}\),\(a_{2}\),\(…\),\(a_{i-1}\)中与\(a_{i}\)不相等的项的个数.
              \((\)Ⅰ\()\)数列\(A\):\(1\),\(1\),\(2\),\(3\),\(4\),请直接写出数列\(B\);
              \((\)Ⅱ\()\)证明:\(b_{i}\geqslant a_{i}(i=1,2,…,n)\)
              \((\)Ⅲ\()\)若数列\(A\)相邻两项均不相等,且\(B\)与\(A\)为同一个数列,证明:\(a_{i}=i(i=1,2,…,n)\).
            • 10.
              在数列\(\{a_{n}\}\)中,若\(a_{1}\),\(a_{2}\)是整数,且\(a_{n}= \begin{cases} \overset{5a_{n-1}-3a_{n-2},a_{n-1}\cdot a_{n-2}{为偶数}}{a_{n-1}-a_{n-2},a_{n-1}\cdot a_{n-2}{为奇函数}}\end{cases}\),\((n∈N^{*}\),且\(n\geqslant 3)\)
              \((\)Ⅰ\()\)若\(a_{1}=1\),\(a_{2}=2\),写出\(a_{3}\),\(a_{4}\),\(a_{5}\)的值;
              \((\)Ⅱ\()\)若在数列\(\{a_{n}\}\)的前\(2018\)项中,奇数的个数为\(t\),求\(t\)得最大值;
              \((\)Ⅲ\()\)若数列\(\{a_{n}\}\)中,\(a_{1}\)是奇数,\(a_{2}=3a_{1}\),证明:对任意\(n∈N^{*}\),\(a_{n}\)不是\(4\)的倍数.
            0/40

            进入组卷