优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              二维空间中,圆的一维测度\((\)周长\()l=2πr\),二维测度\((\)面积\()S=πr^{2}\),三维空间中,球的二维测度\((\)表面积\()S=4πr^{2}\),三维测度\((\)体积\()V= \dfrac {4}{3}πr^{3}\),应用合情推理,若四维空间中,“超球”的三维测度\(V=8πr^{3}\),则其四维测度\(W=(\)  \()\)
              A.\(2πr^{4}\)
              B.\(3πr^{4}\)
              C.\(4πr^{4}\)
              D.\(6πr^{4}\)
            • 2.

              已知函数\(f(x)={{x}^{2}}\ln x-2x\)

              \((\)Ⅰ\()\)求曲线\(y=f(x)\)在点\((1,f(1))\)处的切线方程;

              \((\)Ⅱ\()\)求证:存在唯一的\({{x}_{0}}\in (1,2)\),使得曲线\(y=f(x)\)在点\(({{x}_{0}},f({{x}_{0}}))\)处的切线的斜率为\(f(2)-f(1)\)

              \((\)Ⅲ\()\)比较\(f(1.01)\)与\(-2.01\)的大小,并加以证明.

            • 3.

              若曲线\(y=f(x)=\ln x+ax^{2}(a\)为常数\()\)不存在斜率为负数的切线,则实数\(a\)的取值范围是\((\)  \()\)

              A.\(\left( \left. - \dfrac{1}{2},+∞ \right. \right)\)
              B.\(\left[ \left. - \dfrac{1}{2},+∞ \right. \right) \)

              C.\((0,+∞)\)                                              
              D.\([0,+∞)\)
            • 4.

              点\(P\)在曲线\(C\):\(y=\sqrt{3}\cos x+1\)上移动,若曲线\(C\)在点\(P\)处的切线的倾斜角为\(α\),则\(α\)的取值范围是

              A.\([0,\dfrac{\pi }{3}]\bigcup [\dfrac{2\pi }{3},\pi )\)
              B.\([0,\dfrac{\pi }{6}]\bigcup [\dfrac{5\pi }{6},\pi ) \)
              C.\([0,\dfrac{\pi }{6}]\bigcup [\dfrac{5\pi }{6},\pi ]\)
              D.\([\dfrac{\pi }{3},\dfrac{2\pi }{3}) \)
            • 5.

              若存在实常数\(k\)和\(b\),使得函数\({F}\left( x \right)\)和\({G}\left( x \right)\)对其公共定义域上的任意实数\(x\)都满足:\(F\left( x \right)\geqslant kx+b\)和\(G\left( x \right)\leqslant kx+b\)恒成立,则称此直线\(y=kx+b\)为\(F\left( x \right)\)和\(G\left( x \right)\)的“隔离直线”,已知函数\(f\left( x \right)={{x}^{2}}\left( x\in R \right)\),\(g\left( x \right)=\dfrac{1}{x}\left( x < 0 \right),h\left( x \right)=2e\ln x\),有下列命题:

              \(①F\left( x \right)=f\left( x \right)-g\left( x \right)\)在\(x\in \left( -\dfrac{1}{\sqrt[3]{2}},0 \right)\)内单调递增;

              \(②f\left( x \right)\)和\(g\left( x \right)\)之间存在“隔离直线”,且\({b}\)的最小值为\(-4\);

              \(③f\left( x \right)\)和\(g\left( x \right)\)之间存在“隔离直线”,且\(k\)的取值范围是\((-4,0] \);

              \(④f\left( x \right)\)和\(h\left(x\right) \)之间存在唯一的“隔离直线”\(y=2 \sqrt{e}x-e \).

              其中真命题的个数有\((\)    \()\)

              A.\(1\)个
              B.\(2\)个  
              C.\(3\)个   
              D.\(4\)个
            • 6.

              若实数\(a\)、\(b\)、\(c\)、\(d\)满足\(\dfrac{{{a}^{2}}-2\ln a}{b}=1,c-\dfrac{4}{3}=\dfrac{1}{3}d\),则\({\left(a-c\right)}^{2}+{\left(b-d\right)}^{2} \)的最小值为           

            • 7.

              己知函数\(f(x)=a\ln x-ax-3(a∈R)\).

              \((1)\)求函数\(f(x)\)的单调区间;

              \((2)\)若函数\(y=f(x)\)的图象在点\((2,f(2))\)处的切线的倾斜角为\(45^{\circ}\),对于任意的\(t∈[1,2]\),函数\({g}(x)={{x}^{3}}+{{x}^{2}}\cdot [{f}{{{'}}}(x)+\dfrac{m}{2}]\)在区间\((t,3)\)上总不是单调函数,求\(m\)的取值范围.

            • 8.

              函数\(f(x)=\begin{cases} & \ln x(x > 0) \\ & -\sqrt{-x}(x\leqslant 0) \end{cases}\)与\(g(x)=\dfrac{1}{2}(|x+a|+1)\)的图象上存在关于\(y\)轴对称的点,则实数\(a\)的取值范围是

              A.\((-∞,3-2\ln 2]\)



              B.\([3-2\ln 2,+∞)\)



              C.\([\sqrt{e},+∞)\)
              D.\((-∞,-\sqrt{e}]\)


            • 9.

              \((1)\) 函数\(y{=}\sqrt{{-}\lg(1{+}x)}\)的定义域为______.

              \((2)\)已知\(f(x)\)为偶函数,当\(x{\leqslant }0\) 时,\(f(x){=}e^{x{+}1}{+}x{+}1\),则曲线\(y{=}f(x)\)在\((1{,}1)\)处的切线方程为______.

              \((3)\)  对于函数\(y{=}f(x)\),如果\(f(x_{0}){=}x_{0}\),我们就称实数\(x_{0}\)是函数\(f(x)\)的不动点\({.}\)设函数\(f(x){=}3{+}\log_{2}x\),则函数\(f(x)\)的不动点一共有______个\({.}\)

              \((4)\)  关于函数\(f(x){=}\ln\dfrac{1{-}x}{1{+}x}\),有下列三个命题:
              \({①}f(x)\)的定义域为\(({-∞}{,}{-}1){∪}(1{,}{+∞})\);
              \({②}f(x)\)为奇函数;
              \({③}f(x)\)在定义域上是增函数;
              \({④}\)对任意\(x_{1}{,}x_{2}{∈}({-}1{,}1)\),都有\(f(x_{1}){+}f(x_{2}){=}f(\dfrac{x_{1}{+}x_{2}}{1{+}x_{1}x_{2}}){.}\)
              其中真命题有______\((\)写出所有真命题的番号\()\)
            • 10.

              函数\(f\left( x \right)\)的图象在\(x=2\)处的切线方程为\(2x+y-3=0\),则\(f\left( 2 \right)+{{f}^{{{{'}}}}}\left( 2 \right)=\)____

            0/40

            进入组卷