优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,在平行六面体\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(AA_{1}⊥\)平面\(ABCD\),且\(AB=AD=2\),\(AA_{1}= \sqrt {3}\),\(∠BAD=120^{\circ}\).
              \((1)\)求异面直线\(A_{1}B\)与\(AC_{1}\)所成角的余弦值;
              \((2)\)求二面角\(B-A_{1}D-A\)的正弦值.
            • 2.
              如图\(1\),在直角梯形\(ABCD\)中,\(AD/\!/BC\),\(AB⊥BC\),\(BD⊥DC\),点\(E\)是\(BC\)边的中点,将\(\triangle ABD\)沿\(BD\)折起,使平面\(ABD⊥\)平面\(BCD\),连接\(AE\),\(AC\),\(DE\),得到如图\(2\)所示的几何体.
              \((\)Ⅰ\()\) 求证:\(AB⊥\)平面\(ADC\);
              \((\)Ⅱ\()\) 若\(AD=1\),二面角\(C-AB-D\)的平面角的正切值为\( \sqrt {6}\),求二面角\(B-AD-E\)的余弦值.
            • 3.

              如图,正三棱柱\(ABC-A_{1}B_{1}C_{1}\)的底面边长是\(2\),侧棱长是\(\sqrt{3}\),\(D\)是\(AC\)的中点.


              \((\)Ⅰ\()\)求证:\(B_{1}C/\!/\)平面\(A_{1}BD\);

              \((\)Ⅱ\()\)求二面角\(A_{1}-BD-A\)的大小;

              \((\)Ⅲ\()\)在线段\(AA_{1}\)上是否存在一点\(E\),使得平面\(B_{1}C_{1}E⊥\)平面\(A_{1}BD\),若存在,求出\(AE\)的长;若不存在,说明理由.

            • 4.

              如图在一个\(60^{\circ}\) 的二面角的棱上有两个点\(A\),\(B\),线段\(AC\)、\(BD\)分别在这个二面 角的两个面内,并且都垂直于棱\(AB\),且\(AB=AC=a\),\(BD=2a\),则\(CD\) 的长为\((\)  \()\)

              A.\(2a\)                
              B.\(\sqrt{5}a\)                  
              C.\(a\)                             
              D.\(\sqrt{3}a\)
            • 5.

              如图,四棱锥\(P{-}{ABCD}\)中,底面\(ABCD\)为菱形,\({∠}ABC\ {=}\ 60{^{\circ}}\),\(PA\ {=}\ PB\ {=}\ AB\ {=}\ 2\),点\(N\)为\({AB}\)的中点.


              \((1)\)证明:\(AB{⊥}PC\)

              \((2)\)若点\(M\)为线段\({PD}\)的中点,平面\({PAB}{⊥}\)平面\({ABCD}\),求二面角\(M{-}{NC}{-}P\)的余弦值.

            • 6. 在正方体\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(E\)、\(F\)分别是棱\(AB\)、\(CD\)的中点.
              \((1)\)求证:\(AB_{1}⊥ \)面\(A_{1}BC\);
              \((2)\)求二面角\(A_{1}-BC-A\)的大小.
            • 7.

              如图,在直角梯形\(ABCD\)中,\(AD/\!/BC,AB\bot BC\),且\(BC=2AD=4,E,F\)分别为线段\(AB,DC\)的中点,沿\(EF\)把\(AEFD\)折起,使\(AE\bot CF\),得到如下的立体图形.


              \((\)Ⅰ\()\)证明:平面\(AEFD\bot \)平面\(EBCF\);

              \((\)Ⅱ\()\)若\(BD\bot EC\),求二面角\(F-BD-C\)的余弦值.

            • 8. 如图,平面\(ABEF⊥\)平面\(ABC\),四边形\(ABEF\)为矩形,\(AC=BC.O\)为\(AB\)的中点,\(OF⊥EC\).
              \((\)Ⅰ\()\)求证:\(OE⊥FC\);
              \((\)Ⅱ\()\)若二面角\(F-CE-B\)的余弦值为\(- \dfrac {1}{3}\)时,求\( \dfrac {AC}{AB}\)的值.
            • 9. 如图,在以 \(A\)\(B\)\(C\)\(D\)\(E\)\(F\)为顶点的五面体中,面 \(ABEF\)为正方形, \(AF\)\(=2\) \(FD\),\(\angle AFD={{90}^{\circ }}\),且二面角 \(D\)\(-\) \(AF\)\(-\) \(E\)与二面角 \(C\)\(-\) \(BE\)\(-\) \(F\)都是\({{60}^{\circ }}\).

              \((I)\)证明:平面\(ABEF\)\(\bot \)平面\(EFDC\)

              \((II)\)求二面角\(E\)\(-\)\(BC\)\(-\)\(A\)的余弦值.

            • 10. 如图,在以\(A\),\(B\),\(C\),\(D\),\(E\),\(F\)为顶点的五面体中,面\(ABEF\)为正方形,\(AF=2FD\),\(∠AFD=90^{\circ}\),且二面角\(D-AF-E\)与二面角\(C-BE-F\)都是\(60^{\circ}\).
              \((\)Ⅰ\()\)证明平面\(ABEF⊥\)平面\(EFDC\);
              \((\)Ⅱ\()\)求二面角\(E-BC-A\)的余弦值.

            0/40

            进入组卷