优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              设\(M⊆N^{+}\),正项数列\(\{a_{n}\}\)的前\(n\)项的积为\(T_{n}\),且\(∀k∈M\),当\(n > k\)时,\( \sqrt {T_{n+k}T_{n-k}}=T_{n}T_{k}\)都成立.
              \((1)\)若\(M=\{1\}\),\(a_{1}= \sqrt {3}\),\(a_{2}=3 \sqrt {3}\),求数列\(\{a_{n}\}\)的前\(n\)项和;
              \((2)\)若\(M=\{3,4\}\),\(a_{1}= \sqrt {2}\),求数列\(\{a_{n}\}\)的通项公式.
            • 2.
              已知数列\(\{a_{n}\}\)满足\(a_{n+1}+(-1)^{n}a_{n}= \dfrac {n+5}{2}(n∈N^{*})\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\).
              \((1)\)求\(a_{1}+a_{3}\)的值;
              \((2)\)若\(a_{1}+a_{5}=2a_{3}\).
              \(①\)求证:数列\(\{a_{2n}\}\)为等差数列;
              \(②\)求满足\(S_{2p}=4S_{2m}(p,m∈N^{*})\)的所有数对\((p,m)\).
            • 3.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{n}+n=2a_{n}(n∈N*)\).
              \((1)\)证明:数列\(\{a_{n}+1\}\)为等比数列,并求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}=na_{n}+n\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求满足不等式\( \dfrac {T_{n}-2}{n} > 2018\)的\(n\)的最小值.
            • 4.
              设\(S_{n}\)为正项数列\(\{a_{n}\}\)的前\(n\)项和,满足\(2S_{n}=a \;_{ n }^{ 2 }+a_{n}-2\).
              \((I)\)求\(\{a_{n}\}\)的通项公式;
              \((II)\)若不等式\((1+ \dfrac {2}{a_{n}+t})\;^{a_{n}}\geqslant 4\)对任意正整数\(n\)都成立,求实数\(t\)的取值范围;
              \((III)\)设\(b_{n}=e\;^{ \frac {3}{4}a_{n}\ln (n+1)}(\)其中\(r\)是自然对数的底数\()\),求证:\( \dfrac {b_{1}}{b_{3}}+ \dfrac {b_{2}}{b_{4}}+..+ \dfrac {b_{n}}{b_{n+2}} < \dfrac { \sqrt {6}}{6}\).
            • 5.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=k(3^{n}-1)\),且\(a_{3}=27\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}=\log _{3}a_{n}\),求数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和\(T_{n}\).
            • 6.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}= \dfrac {n^{2}}{2}+ \dfrac {3n}{2}\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若数列\(\{b_{n}\}\)满足\(b_{n}=a_{n+2}-a_{n}+ \dfrac {1}{a_{n+2}\cdot a_{n}}\),且数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < 2n+ \dfrac {5}{12}\).
            • 7.
              设正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),已知\(S_{n}\),\(a_{n}+1\),\(4\)成等比数列.
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),设\(b_{n}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < \dfrac {1}{2}\).
            • 8.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}+ \dfrac {1}{2}a_{n}=1(n∈N^{+}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=\log _{ \frac {1}{3}}(1-S_{n})(n∈N^{+})\),求\( \dfrac {1}{b_{1}b_{2}}+ \dfrac {1}{b_{2}b_{3}}+…+ \dfrac {1}{b_{n}b_{n+1}}\)的值.
            • 9.
              已知在递增等差数列\(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{3}\)是\(a_{1}\)和\(a_{9}\)的等比中项.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}= \dfrac {1}{(n+1)a_{n}}\),\(S_{n}\)为数列\(\{b_{n}\}\)的前\(n\)项和,求\(S_{100}\)的值.
            • 10.
              已知数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(|a_{n+1}-a_{n}|=p^{n}\),\(n∈N*\).
              \((1)\)若\(p=1\),写出\(a_{4}\)的所有值;
              \((2)\)若数列\(\{a_{n}\}\)是递增数列,且\(a_{1}\),\(2a_{2}\),\(3a_{3}\)成等差数列,求\(p\)的值;
              \((3)\)若\(p= \dfrac {1}{2}\),且\(\{a_{2n-1}\}\)是递增数列,\(\{a_{2n}\}\)是递减数列,求数列\(\{a_{n}\}\)的通项公式.
            0/40

            进入组卷