优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图所示,\(F_{1}\)是抛物线\(C\):\(y^{2}=4x\)的焦点,\(F_{i}\)在\(x\)轴上,\((\)其中\(i=1\),\(2\),\(3\),\(…n)\),\(F_{i}\)的坐标为\((x_{i},0)\)且\(x_{i} < x_{i+1}\),\(P_{i}\)在抛物线\(C\)上,且\(P_{i}\)在第一象
              限\(\triangle P_{i}F_{i}F_{i+1}\)是正三角形.
              \((\)Ⅰ\()\)证明:数列\(\{x_{i+1}-x_{i}\}\)是等差数列;
              \((II)\)记\(\triangle P_{i}F_{i}F_{i+1}\)的面积为\(S_{i}\),证明:\( \dfrac {1}{S_{1}}+ \dfrac {1}{S_{2}}+ \dfrac {1}{S_{3}}+…+ \dfrac {1}{S_{n}} < \dfrac {3}{8} \sqrt {3}\).
            • 2.
              定义:从一个数列\(\{a_{n}\}\)中抽取若干项\((\)不少于三项\()\)按其在\(\{a_{n}\}\)中的次序排列的一列数叫做\(\{a_{n}\}\)的子数列,成等差\((\)等比\()\)的子数列叫做\(\{a_{n}\}\)的等差\((\)等比\()\)子列.
              \((1)\)记数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),已知\(S_{n}=n^{2}\),求证:数列\(\{a_{3n}\}\)是数列\(\{a_{n}\}\)的等差子列;
              \((2)\)设等差数列\(\{a_{n}\}\)的各项均为整数,公差\(d\neq 0\),\(a_{5}=6\),若数列\(a_{3}\),\(a_{5}\),\(a\;_{n_{1}}\)是数列\(\{a_{n}\}\)的等比子列,求\(n_{1}\)的值;
              \((3)\)设数列\(\{a_{n}\}\)是各项均为实数的等比数列,且公比\(q\neq 1\),若数列\(\{a_{n}\}\)存在无穷多项的等差子列,求公比\(q\)的所有值.
            • 3.
              在公差不为零的等差数列\(\{a_{n}\}\)中,已知\(a_{1}=1\),且\(a_{1}\),\(a_{2}\),\(a_{5}\)依次成等比数列\(.\)数列\(\{b_{n}\}\)满足\(b_{n+1}=2b_{n}-1\),且\(b_{1}=3\).
              \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
              \((2)\)求数列\(\{a_{n}(b_{n}-1)\}\)的前\(n\)项和为\(S_{n}\).
            • 4.
              有三个数成等差数列,前两个数的和的\(3\)倍正好是第三个数的\(2\)倍,如果把第二个数减去\(2\),那么所得数是第一个数与第三个数的等比中项\(.\)求原来的三个数.
            • 5.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}.\)且\(S_{n}=2n^{2}+2n\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若点\((b_{n},a_{n})\)在函数\(y=1og_{2}x\)的图象上,求数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\).
            • 6.
              设数列\(\{a_{n}\}\)满足:\(①a_{1}=1\);\(②\)所有项\(a_{n}∈N^{*}\);\(③1=a_{1} < a_{2} < … < a_{n} < a_{n+1} < …\)设集合\(A_{m}=\{n|a_{n}\leqslant m,m∈N^{*}\}\),将集合\(A_{m}\)中的元素的最大值记为\(b_{m}.\)换句话说,\(b_{m}\)是数列\(\{a_{n}\}\)中满足不等式\(a_{n}\leqslant m\)的所有项的项数的最大值\(.\)我们称数列\(\{b_{n}\}\)为数列\(\{a_{n}\}\)的伴随数列\(.\)例如,数列\(1\),\(3\),\(5\)的伴随数列为\(1\),\(1\),\(2\),\(2\),\(3\).
              \((1)\)请写出数列\(1\),\(4\),\(7\)的伴随数列;
              \((2)\)设\(a_{n}=3^{n-1}\),求数列\(\{a_{n}\}\)的伴随数列\(\{b_{n}\}\)的前\(20\)之和;
              \((3)\)若数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=n^{2}+c(\)其中\(c\)为常数\()\),求数列\(\{a_{n}\}\)的伴随数列\(\{b_{m}\}\)的前\(m\)项和\(T_{m}\).
            • 7.
              已知\(\{a_{n}\}\)是各项均为正数的等比数列,\(\{b_{n}\}\)是等差数列,且\(a_{1}=b_{1}=1\),\(b_{2}+b_{3}=2a_{3}\),\(a_{5}-3b_{2}=7\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(c_{n}=a_{n}b_{n}\),\(n∈N^{*}\),求数列\(\{c_{n}\}\)的前\(n\)项和.
            • 8.
              已知\(\{a_{n}\}\)是等差数列,满足\(a_{1}=3\),\(a_{4}=12\),数列\(\{b_{n}\}\)满足\(b_{1}=4\),\(b_{4}=20\),且\(\{b_{n}-a_{n}\}\)为等比数列.
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((2)\)求数列\(\{b_{n}\}\)的前\(n\)项和.
            • 9.
              已知数列\(\{a_{n}\}\)中,\(a_{2}=a(a\)为非零常数\()\),其前\(n\)项和\(S_{n}\)满足:\(S_{n}= \dfrac {n(a_{n}-a_{1})}{2}(n∈N^{*})\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(a=2\),且\( \dfrac {1}{4}a_{m}^{2}-S_{n}=11\),求\(m\)、\(n\)的值;
              \((3)\)是否存在实数\(a\)、\(b\),使得对任意正整数\(p\),数列\(\{a_{n}\}\)中满足\(a_{n}+b\leqslant p\)的最大项恰为第\(3p-2\)项?若存在,分别求出\(a\)与\(b\)的取值范围;若不存在,请说明理由.
            • 10.
              某奖励基金发放方式为:每年一次,把奖金总额平均分成\(6\)份,奖励在某\(6\)个方面为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息存入基金总额,以便保证奖金数逐年增加\(.\)假设基金平均年利率为\(r=6.24\%\),\(2000\)年该奖发放后基金总额约为\(21000\)万元\(.\)用\(a_{n}\)表示为第\(n(n∈N^{*})\)年该奖发放后的基金总额\((2000\)年为第一年\()\).
              \((1)\)用\(a_{1}\)表示\(a_{2}\)与\(a_{3}\),并根据所求结果归纳出\(a_{n}\)的表达式;
              \((2)\)试根据\(a_{n}\)的表达式判断\(2011\)年度该奖各项奖金是否超过\(150\)万元?并计算从\(2001\)年到\(2011\)年该奖金累计发放的总额.
              \((\)参考数据:\(1.0624^{10}=1.83\),\(1.032^{9}=1.32\),\(1.0312^{10}=1.36\),\(1.032^{11}=1.40)\)
            0/40

            进入组卷