优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              某食品店为了了解气温对销售量的影响,随机记录了该店\(1\)月份中\(5\)天的日销售量\(y(\)单位:千克\()\)与该地当日最低气温\(x(\)单位:\({{ }}^{{∘}}C)\)的数据,如下表:

              \(x\)

              \(2\)

              \(5\)

              \(8\)

              \(9\)

              \(11\)

              \(y\)

              \(12\)

              \(10\)

              \(8\)

              \(8\)

              \(7\)

              \((1)\)求出\(y\)与\(x\)的回归方程\(\hat{y}{=}\hat{b}x{+}\hat{a}\);
              \((2)\)判断\(y\)与\(x\)之间是正相关还是负相关;若该地\(1\)月份某天的最低气温为\(6^{{∘}}C\),请用所求回归方程预测该店当日的销售量;
              \((3)\)设该地\(1\)月份的日最低气温\(X{~}N(\mu{,}\sigma^{2})\),其中\(\mu\)近似为样本平均数\(\overset{{.}}{x}\),\(\sigma^{2}\)近似为样本方差\(s^{2}\),求\(P(3{.}8{ < }X{ < }13{.}4)\).
              附:\({①}\)回归方程\(\hat{y}{=}\hat{b}x{+}\hat{a}\)中,\(\hat{b}{=}\dfrac{\sum_{i{=}1}^{n}(x_{i}y_{i}){-}n\overset{{.}}{x\overset{{.}}{y}}}{\sum_{i{=}1}^{n}x_{i}^{2}{-}n(\overset{{.}}{x})^{2}}\),\(\hat{a}{=}\overset{{.}}{y}{-}\hat{b}\overset{{.}}{x}\).
              \({②}\sqrt{10}{≈}3{.}2\),\(\sqrt{3{.}2}{≈}1{.}8{.}\)若\(X{~}N(\mu{,}\sigma^{2})\),则\(P(\mu{-}\sigma{ < }X{ < }\mu{+}\sigma){=}0{.}6826\),\(P(\mu{-}2\sigma{ < }X{ < }\mu{+}2\sigma){=}0{.}9544\).
            • 2. 近年来“双十一”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业\({.}\)某商家为了准备\(2018\)年双十一的广告策略,随机调查\(1000\)名淘宝客户在\(2017\)年双十一前后\(10\)天内网购所花时间,并将调查结果绘制成如图所示的频率分布直方图.

              由频率分布直方图可以认为,这\(10\)天网购所花的时间\(T\)近似服从\(N(\mu{,}\sigma^{2})\),其中\(\mu\)用样本平均值代替,\(\sigma^{2}{=}0{.}24\).
              \((\)Ⅰ\()\)计算样本的平均值\(\mu\),并利用该正态分布求\(P(1{.}51{ < }T{ < }2{.}49)\).
              \((\)Ⅱ\()\)利用由样本统计获得的正态分布估计整体,将这\(10\)天网购所花时间在\((2{,}2{.}98)\)小时内的人定义为目标客户,对目标客户发送广告提醒\({.}\)现若随机抽取\(10000\)名淘宝客户,记\(X\)为这\(10000\)人中目标客户的人数.
              \((i)\)求\(EX\);
              \(({ii})\)问:\(10000\)人中目标客户的人数\(X\)为何值的概率最大?
              附:若随机变量\(Z\)服从正态分布\(N(\mu{,}\sigma^{2})\),则\(P(\mu{-}\sigma{ < }Z{ < }\mu{+}\sigma){=}0{.}6826\),\(P(\mu{-}2\sigma{ < }Z{ < }\mu{+}2\sigma){=}0{.}9544\),\(P(\mu{-}3\sigma{ < }Z{ < }\mu{+}3\sigma){=}0{.}9974\),\(\sqrt{0{.}24}{≈}0{.}49\).
            • 3.

              为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取\(16\)个零件,并测量其尺寸\((\)单位:\(cm).\)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布\(N(μ,σ^{2}).\)

              \((1)\)假设生产状态正常,记\(X\)表示一天内抽取的\(16\)个零件中其尺寸在\((μ-3σ,μ+3σ)\)之外的零件数,求\(P(X\geqslant 1)\)及\(X\)的数学期望;

              \((2)\)一天内抽检零件中,如果出现了尺寸在\((μ-3σ,μ+3σ)\)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

              \((i)\)试说明上述监控生产过程方法的合理性;

              \((ii)\)下面是检验员在一天内抽取的\(16\)个零件的尺寸:

              \(9.95\) \(10.12\) \(9.96\) \(9.96\) \(10.01\) \(9.92\) \(9.98\) \(10.04\)

              \(10.26\) \(9.91\) \(10.13\) \(10.02\) \(9.22\) \(10.04\) \(10.05\) \(9.95\)

              经计算得\(\overline{x}= \dfrac{1}{16}\sum_{^{i=1}}^{_{16}}x_{i}=9.97\),\(s= \sqrt{ \dfrac{1}{16}\sum_{^{i=1}}^{_{16}}(x_{i}-\overline{x})^{2}}= \sqrt{ \dfrac{1}{16}\left( \left. \sum_{^{i=1}}^{_{16}}x\rlap{_{i}}{^{2}}-16\overline{x}^{2} \right. \right)}≈0.212\),

              其中\(x_{i}\)为抽取的第\(i\)个零件的尺寸,\(i=1\),\(2\),\(…\),\(16\).

              用样本平均数\(\overline{x}\)作为\(μ\)的估计值\(\hat{μ}\),用样本标准差\(s\)作为\(σ\)的估计值\(\hat{σ}\),利用估计值判断是否需对当天的生产过程

              进行检查?剔除\((\hat{μ}-3\hat{σ},\hat{μ}+3\hat{σ})\)之外的数据,用剩下的数据估计\(μ\)和\(σ(\)精确到\(0.01)\).

              附:若随机变量\(Z\)服从正态分布\(N(μ,σ^{2})\),则\(P(μ-3σ < Z < μ+3σ)=0.997 4.0.997 4^{16}≈0.959 2\),\( \sqrt{0.008}≈0.09\).

            • 4. 为了了解一种植物的生长情况,抽取一批该植物测量它们的高度\((\)单位:\(cm)\)作为样本,其频率分布直方图如图所示.

              \((1)\)求抽取的该批植物高度的平均数\(x\)和样本方差\(s\)\({\,\!}^{2}\)\((\)同一组中的数据用该组区间的中点值作代表\()\);

              \((2)\)假设该植物的高度\(Z\)服从正态分布\(N(μ,σ\)\({\,\!}^{2}\)\()\),其中\(μ\)近似为样本平均数\(x\),\(σ\)\({\,\!}^{2}\)近似为样本方差\(s\)\({\,\!}^{2}\),利用该正态分布求\(P(64.5 < Z < 96)\).\((\)参考数据:\( \sqrt{110}\)取\(10.5)\)

            • 5.
              \(2016\)年年初为迎接习总书记并向其报告工作,省有关部门从南昌大学校企业的\(LED\)产品中抽取\(1000\)件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

              \((\)Ⅰ\()\)求这\(1000\)件产品质量指标值的样本平均数\(x\)和样本方差\(s^{2}(\)同一组数据用该区间的中点值作代表\()\);
              \((\)Ⅱ\()\)由频率分布直方图可以认为,这种产品的质量指标值\(Z\)服从正态分布\(N(μ,δ^{2})\),其中\(μ\)近似为样本平均数\(x\),\(δ^{2}\)近似为样本方差\(s^{2}\) .
              \((i)\)利用该正态分布,求\(P(175.6 < Z < 224.4)\);
              \((ii)\)某用户从该企业购买了\(100\)件这种产品,记\(X\)表示这\(100\)件产品中质量指标值为于区间\((175.6,224.4)\) 的产品件数,利用\((i)\)的结果,求\(EX\).
              附:\( \sqrt{150} ≈12.2.\)若\(Z~N(μ,δ^{2})\),则\(P(μ-δ < Z < μ+δ)=0.6826\),\(P(μ-2δ < Z < μ+2δ)=0.9544.\)   
            • 6. 云南省\(2016\)年全省高中男生身高统计调查数据显示:全省\(100 000\)名高中男生的身高服从正态分布 \(N\)\((170.5,16).\)现从云南省某校高三年级男生中随机抽取\(50\)名测量身高,测量发现被测学生身高全部介于\(157.5 cm\)和\(187.5 cm\)之间,将测量结果按如下方式分成\(6\)组:第\(1\)组\([157.5,162.5)\),第\(2\)组\([162.5,167.5)\),\(…\),第\(6\)组\([182.5,187.5]\),如图是按上述分组方式得到的频率分布直方图.

              \((1)\)试评估该校高三年级男生在全省高中男生中的平均身高状况;

              \((2)\)求这\(50\)名男生身高在\(177.5 cm\)以上\((\)含\(177.5 cm)\)的人数;

              \((3)\)从这\(50\)名男生身高在\(177.5 cm\)以上\((\)含\(177.5 cm)\)的人中任意抽取\(2\)人,该\(2\)人中身高排名\((\)从高到低\()\)在全省前\(135\)名的人数记为\(ξ\),求\(ξ\)的数学期望.

              参考数据:

              \(ξ\)\(~\)\(N\)\((\)\(μ\)\(σ\)\({\,\!}^{2})\),则

              \(P\)\((\)\(μ\)\(-\)\(σ\)\( < \)\(ξ\)\(\leqslant \)\(μ\)\(+\)\(σ\)\()≈0.682 7\),

              \(P\)\((\)\(μ\)\(-2\)\(σ\)\( < \)\(ξ\)\(\leqslant \)\(μ\)\(+2\)\(σ\)\()≈0.954 5\),

              \(P\)\((\)\(μ\)\(-3\)\(σ\)\( < \)\(ξ\)\(\leqslant \)\(μ\)\(+3\)\(σ\)\()≈0.997 3\).

            • 7.

              为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取\(16\)个零件,并测量其尺寸\((\)单位:\(cm).\)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布\(N\left( \mu ,{{\sigma }^{2}} \right)\).

              \((1)\)假设生产状态正常,记\(X\)表示一天内抽取的\(16\)个零件中其尺寸在\(\left( \mu -3\sigma ,\mu +3\sigma \right)\)之外的零件数,求\(P\left( X\geqslant 1 \right)\)及\(X\)的数学期望;

              \((2)\)一天内抽检零件中,如果出现了尺寸在\(\left( \mu -3\sigma ,\mu +3\sigma \right)\)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

              \((ⅰ)\)试说明上述监控生产过程方法的合理性;

              \((ⅱ)\)下面是检验员在一天内抽取的\(16\)个零件的尺寸:

              \(9.95\)

              \(10.12\)

              \(9.96\)

              \(9.96\)

              \(10.01\)

              \(9.92\)

              \(9.98\)

              \(10.04\)

              \(10.26\)

              \(9.91\)

              \(10.13\)

              \(10.02\)

              \(9.22\)

              \(10.04\)

              \(10.05\)

              \(9.95\)


              经计算得\(\bar{x}=\dfrac{1}{16}\underset{16}{\overset{i=1}{\sum}}\,{{x}_{i}}=9.97\),\(s=\sqrt{\dfrac{1}{16}\underset{16}{\overset{i=1}{\sum}}\,{{\left({{x}_{i}}-\bar{x} \right)}^{2}}}=\sqrt{\dfrac{1}{16}{{(\underset{i=1}{\overset{16}{ \sum }}\,x_{i}^{2}-16{{{\bar{x}}}^{2}})}^{2}}}\approx 0.212\),其中\({{x}_{i}}\)为抽取的第\(i\)个零件的尺寸,\(i=1,2,\cdot \cdot \cdot ,16\).

              用样本平均数\(\bar{x}\)作为\(\mu \)的估计值\(\hat{\mu }\),用样本标准差\(s\)作为\(\sigma \)的估计值\(\hat{\sigma }\),利用估计值判断是否需对当天的生产过程进行检查?剔除\(\left( \hat{\mu }-3\hat{\sigma },\hat{\mu }+3\hat{\sigma } \right)\)之外的数据,用剩下的数据估计\(\mu \)和\(\sigma (\)精确到\(0.01)\).

              附:若随机变量\(Z\)服从正态分布\(N\left( \mu ,{{\sigma }^{2}} \right)\),则\(P(\mu -3\sigma < Z < \mu +3\sigma )=0.9974\),

              \({{0.9974}^{16}}=0.9592\),\(\sqrt{0.008}\approx 0.09\).

            • 8.

              为评估设备\(M\)生产某种零件的性能,从设备\(M\)生产零件的流水线上随机抽取\(100\)件零件作为样本,测量其直径后,整理得到下表:

              直径\(/\) \(mm\)

              \(58\)

              \(59\)

              \(61\)

              \(62\)

              \(63\)

              \(64\)

              \(65\)

              \(66\)

              \(67\)

              \(68\)

              \(69\)

              \(70\)

              \(71\)

              \(73\)

              合计

              件数

              \(1\)

              \(1\)

              \(3\)

              \(5\)

              \(6\)

              \(33\)

              \(18\)

              \(4\)

              \(4\)

              \(2\)

              \(1\)

              \(2\)

              \(1\)

              \(100\)

              经计算,样本的平均值\(\mu =65\),标准差\(\sigma =2.2\),以频率值作为概率的估计值.

              \((1)\)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为\(X\),并根据以下不等式进行评判\((P\)表示相应事件的概率\()\);\(①P(\mu -\sigma < X\leqslant \mu +\sigma )\geqslant 0.6826\);\(②P(\mu -2\sigma < X\leqslant \mu +2\sigma )\geqslant 0.9544\);\(③P(\mu -3\sigma < X\leqslant \mu +3\sigma )\geqslant 0.9974\) .

              评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备\(M\)的性能等级.

              \((2)\)将直径小于等于\(\mu -2\sigma \)或直径大于\(\mu +2\sigma \)的零件认为是次品.

              \((ⅰ)\)从设备\(M\)的生产流水线上随意抽取\(2\)件零件,计算其中次品个数\(Y\)的数学期望\(E(Y)\);

              \((ⅱ)\)从样本中随意抽取\(2\)件零件,计算其中次品个数\(Z\)的数学期望\(E(Z)\) .

            • 9.
              \((\)本小题满分\(12\)分\()\)从某企业生产的某种产品中抽取\(500\)件,测量这些产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:

              \((1)\)求这\(500\)件产品质量指标值的样本平均数 和样本方差\(s^{2}(\)同一组中的数据用该组区间的中点值作代表\()\).

              \((2)\)由直方图可以认为,这种产品的质量指标值\(Z\)服从正态分布\(N(μ,σ^{2})\),其中\(μ\)近似为样本平均数 ,\(σ^{2}\)近似为样本方差\(s^{2}\).

              \(①\)利用该正态分布,求\(P(187.8 < Z < 212.2)\).

              \(②\)某用户从该企业购买了\(100\)件这种产品,记\(X\)表示这\(100\)件产品中质量指标值位于区间\((187.8,212.2)\)的产品件数,利用\(①\)的结果,求\(EX\).

              附: \(≈12.2\).

              若\(Z~N(μ,σ^{2})\),则\(P(μ-σ < Z < μ+σ)=0.6826\),\(P(μ-2σ < Z < μ+2σ)=0.9544\).

            • 10. 在某次数学考试中,考生的成绩\(ξ\)服从一个正态分布,即\(ξ~N(90,100)\).
              \((1)\)试求考试成绩\(ξ\)位于区间\((70,110)\)上的概率是多少?
              \((2)\)若这次考试共有\(2\) \(000\)名考生,试估计考试成绩在\((80,100)\)间的考生大约有多少人?
            0/40

            进入组卷