优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              在直角坐标系\(xOy\)中,曲线\(C_{1}\)的参数方程为\(\begin{cases} & x=a\cos t, \\ & y=1+a\sin t \\ \end{cases}(t\)为参数,\(a > 0).\)在以坐标原点为极点,\(x\)轴正半轴为极轴的极坐标系中,曲线\(C_{2}\):\(ρ=4\cos θ\).

              \((1)\)说明\(C_{1}\)是哪一种曲线,并将\(C_{1}\)的方程化为极坐标方程;

              \((2)\)直线\(C_{3}\)的极坐标方程为\(θ=α_{0}\),其中\(α_{0}\)满足\(\tan α_{0}=2\),若曲线\(C_{1}\)与\(C_{2}\)的公共点都在\(C_{3}\)上,求\(a\).

            • 2.
              \((\)一\()\) 在直角坐标系\(xOy\)中,曲线\(C\) \(1\)的参数方程为\(\begin{cases}x=a\cos t \\ y=1+a\sin t\end{cases} (t\)为参数,\(a > 0\)在以坐标原点为极点,\(x\)轴正半轴为极轴的极坐标系中,曲线\(C_{2}\):\(ρ=4\cos θ \).
              \((1)\)说明\(C_{1}\)是哪一种曲线,并将\(C\) \(1\)的方程化为极坐标方程;
              \((2)\)直线\(C_{3}\)的极坐标方程为\(θ={a}_{0} \),其中\(a_{0}\)满足\(\tan a_{0}=2\),若曲线\(C_{1}\)与\(C_{2}\)的公共点都在\(C_{3}\)上,求\(a\).


              \((\)二\()\)已知函数\(f\left(x\right)=\left|2x-a\right|+a \).
              \((1)\)当\(a=2\)时,求不等式\(f\left(x\right)\leqslant 6 \)的解集;
              \((2)\)设函数\(g\left(x\right)=\left|2x-1\right| \),当\(x∈R \)时,\(f\left(x\right)+g\left(x\right)\geqslant 3 \),求\(a\)的取值范围.
            • 3.

              I.在直角坐标系\(xOy\)中,曲线\(C_{1}\)的参数方程为\(\begin{cases}x=a\cos t \\ y=1+a\sin t\end{cases} (t\)为参数,\(a > 0).\)在以坐标原点为极点,\(x\)轴正半轴为极轴的极坐标系中,曲线\(C_{2}\):\(ρ=4\cos θ\).

              \((\)Ⅰ\()\)说明\(C_{1}\)是哪一种曲线,并将\(C_{1}\)的方程化为极坐标方程;
              \((\)Ⅱ\()\)直线\(C_{3}\)的极坐标方程为\(θ=α_{0}\),其中\(α_{0}\)满足\(\tan α_{0}=2\),若曲线\(C_{1}\)与\(C_{2}\)的公共点都在\(C_{3}\)上,求\(a\).

              \(II.\)函数\(f(x)=|x-1|+|x-2a|\).
              \((1)\)当\(a=1\)时,解不等式\(f(x)\leqslant 3\);
              \((2)\)若不等式\(f(x)\geqslant 3a^{2}\)对任意\(x∈R\)恒成立,求实数\(a\)的取值范围.
            • 4.

              已知圆\({{C}_{1}}:{{x}^{2}}+{{y}^{2}}-4x+2y=0\),\({{C}_{2}}:{{x}^{2}}+{{y}^{2}}-2y-4=0\)交于\(A\)、\(B\)两点;

              \((1)\)求过\(A\)、\(B\)两点的直线方程;

              \((2)\)求过\(A\)、\(B\)两点,且圆心在直线\(2x+4y=1\)上的圆的方程.

            • 5.

              已知圆\({{O}_{1}}\)与圆\({{O}_{2}}\)的极坐标方程分别为\(\rho =2\)\({{\rho }^{2}}-2\sqrt{2}\rho \cos (\theta -\dfrac{\pi }{4})=2.\)

              \((1)\)求圆\({{O}_{1}}\)与圆\({{O}_{2}}\)的直角坐标方程;

              \((2)\)设两圆交点分别为\(A,B,\)求弦长\(\left| AB \right|\).

            • 6.    已知圆\(C_{1}\):\(x^{2}+y^{2}-3x-3y+3=0\),圆\(C_{2}\):\(x^{2}+y^{2}-2x-2y=0\),求两圆的公共弦所在的直线方程及弦长.
            • 7.

              已知两圆\(C\)\({\,\!}_{1}\):\(x\)\({\,\!}^{2}+\)\(y\)\({\,\!}^{2}-2\)\(x\)\(-6\)\(y\)\(-1=0\)和\(C\)\({\,\!}_{2}\):\(x\)\({\,\!}^{2}+\)\(y\)\({\,\!}^{2}-10\)\(x\)\(-12\)\(y\)\(+45=0\).

              \((1)\)求证:圆\(C\)\({\,\!}_{1}\)和圆\(C\)\({\,\!}_{2}\)相交;

              \((2)\)求圆\(C\)\({\,\!}_{1}\)和圆\(C\)\({\,\!}_{2}\)的公共弦所在直线的方程和公共弦长.

            • 8.

              已知圆\(M:{{x}^{2}}+{{(y-4)}^{2}}=1\),直线\(l:2x-y=0\),点\(P\)在直线\(l\)上,过点\(P\)作圆\(M\)的切线\(PA\)、\(PB\),切点为\(A\)、\(B\).

              \((\)Ⅰ\()\)若\(\angle APB={{60}^{\circ }}\),求\(P\)点坐标;

              \((\)Ⅱ\()\)求证:经过\(A\)、\(P\)、\(M\)三点的圆与圆\(M\)的公共弦所在直线必过定点,并求出定点的坐标.

            0/40

            进入组卷