优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,在正三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,点\(D\)在棱\(BC\)上,\(AD⊥C_{1}D\),点\(E\),\(F\)分别是\(BB_{1}\),\(A_{1}B_{1}\)的中点.
              \((1)\)求证:\(D\)为\(BC\)的中点;
              \((2)\)求证:\(EF/\!/\)平面\(ADC_{1}\).
            • 2.
              如图,在直四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,底面\(ABCD\)为平行四边形,\(C_{1}B=C_{1}\)D.求证:
              \((1)B_{1}D_{1}/\!/\)平面\(C_{1}BD\);
              \((2)\)平面\(C_{1}BD⊥\)平面\(AA_{1}C_{1}\)C.
            • 3.
              如图,四边形\(ABCD\)中,\(AB⊥AD\),\(AD/\!/BC\),\(AD=6\),\(BC=2AB=4\),\(E\),\(F\)分别在\(BC\),\(AD\)上,\(EF/\!/AB\),现将四边形\(ABCD\)沿\(EF\)折起,使平面\(ABEF⊥\)平面\(EFDC\).
              \((1)\)若\(BE=1\),是否在折叠后的线段\(AD\)上存在一点\(P\),且\( \overrightarrow{AP}=λ \overrightarrow{PD}\),使得\(CP/\!/\)平面\(ABEF\)?若存在,求出\(λ\)的值,若不存在,说明理由;
              \((2)\)求三棱锥\(A-CDF\)的体积的最大值,并求出此时二面角\(E-AC-F\)的余弦值.
            • 4.
              如图,在几何体\(ABCDEF\)中,四边形\(ADEF\)为矩形,四边形\(ABCD\)为梯形,\(AB/\!/CD\),平面\(CBE\)与平面\(BDE\)垂直,且\(CB⊥BE\).
              \((1)\)求证:\(ED⊥\)平面\(ABCD\);
              \((2)\)若\(AB⊥AD\),\(AB=AD=1\),且平面\(BCE\)与平面\(ADEF\)所成锐二面角的余弦值为\( \dfrac { \sqrt {6}}{6}\),求\(AF\)的长.
            • 5.
              如图,直角梯形\(ABCD\)中,\(AB/\!/CD\),\(∠BCD=90^{\circ}\),\(BC=CD= \sqrt {2}\),\(AD=BD\),\(EC\)丄底面\(ABCD\),\(FD\)丄底面\(ABCD\) 且有\(EC=FD=2\).
              \((\)Ⅰ\()\)求证:\(AD\)丄\(BF\);
              \((\)Ⅱ\()\)若线段\(EC\)的中点为\(M\),求直线\(AM\)与平面\(ABEF\)所成角的正弦值.
            • 6.
              如图,在三棱锥\(P-ABC\)中,平面\(PAB⊥\)平面\(ABC\),\(AB=6\),\(BC=2 \sqrt {3}\),\(AC=2 \sqrt {6}\),\(D\),\(E\)分别为线段\(AB\),\(BC\)上的点,且\(AD=2DB\),\(CE=2EB\),\(PD⊥AC\).
              \((1)\)求证:\(PD⊥\)平面\(ABC\);
              \((2)\)若\(PA\)与平面\(ABC\)所成的角为\( \dfrac {π}{4}\),求平面\(PAC\)与平面\(PDE\)所成的锐二面角.
            • 7.
              如图,在三棱锥\(P-ABC\)中,\(PA⊥AC\),\(PC⊥BC\),\(M\)为\(PB\)的中点,\(D\)为\(AB\)的中点,且\(\triangle AMB\)为正三角形
              \((1)\)求证:\(BC⊥\)平面\(PAC\)
              \((2)\)若\(PA=2BC\),三棱锥\(P-ABC\)的体积为\(1\),求点\(B\)到平面\(DCM\)的距离.
            • 8.
              如图,四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)的底面为菱形,\(∠BAD=120^{\circ}\),\(AB=2\),\(E\),\(F\)为\(CD\),\(AA_{1}\)中点.
              \((1)\)求证:\(DF/\!/\)平面\(B_{1}AE\);
              \((2)\)若\(AA_{1}⊥\)底面\(ABCD\),且直线\(AD_{1}\)与平面\(B_{1}AE\)所成线面角的正弦值为\( \dfrac {3}{4}\),求\(AA_{1}\)的长.
            • 9.
              如图,在四棱锥\(P-ABCD\)中,四边形\(ABCD\)为正方形,\(PA⊥\)平面\(ABCD\),\(PA=AB\),\(M\)是\(PC\)上一点,且\(BM⊥PC\).
              \((1)\)求证:\(PC⊥\)平面\(MBD\);
              \((2)\)求直线\(PB\)与平面\(MBD\)所成角的正弦值.
            • 10.
              设平面\(ABCD⊥\)平面\(ABEF\),\(AB/\!/CD\),\(AB/\!/EF\),\(∠BAF=∠ABC=90^{\circ}\),\(BC=CD=AF=EF=1\),\(AB=2\).
              \((\)Ⅰ\()\)证明:\(CE/\!/\)平面\(ADF\);
              \((\)Ⅱ\()\) 求直线\(DF\)与平面\(BDE\)所成角的正弦值.
            0/40

            进入组卷