优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              设\(M⊆N^{+}\),正项数列\(\{a_{n}\}\)的前\(n\)项的积为\(T_{n}\),且\(∀k∈M\),当\(n > k\)时,\( \sqrt {T_{n+k}T_{n-k}}=T_{n}T_{k}\)都成立.
              \((1)\)若\(M=\{1\}\),\(a_{1}= \sqrt {3}\),\(a_{2}=3 \sqrt {3}\),求数列\(\{a_{n}\}\)的前\(n\)项和;
              \((2)\)若\(M=\{3,4\}\),\(a_{1}= \sqrt {2}\),求数列\(\{a_{n}\}\)的通项公式.
            • 2.
              定义\( \dfrac {n}{p_{1}+p_{2}+\cdots +p_{n}}\)为\(n\)个正数\(p_{1}\),\(p_{2}\),\(…\),\(p_{n}\)的“均倒数”,若已知数列\(\{a_{n}\}\)的前\(n\)项的“均倒数”为\( \dfrac {1}{2n+1}\),又\(b_{n}= \dfrac {a_{n}+1}{4}\),则\( \dfrac {1}{b_{1}b_{2}}+ \dfrac {1}{b_{2}b_{3}}+…+ \dfrac {1}{b_{2017}b_{2018}}=\) ______ .
            • 3.
              设\(S_{n}\)为正项数列\(\{a_{n}\}\)的前\(n\)项和,满足\(2S_{n}=a \;_{ n }^{ 2 }+a_{n}-2\).
              \((I)\)求\(\{a_{n}\}\)的通项公式;
              \((II)\)若不等式\((1+ \dfrac {2}{a_{n}+t})\;^{a_{n}}\geqslant 4\)对任意正整数\(n\)都成立,求实数\(t\)的取值范围;
              \((III)\)设\(b_{n}=e\;^{ \frac {3}{4}a_{n}\ln (n+1)}(\)其中\(r\)是自然对数的底数\()\),求证:\( \dfrac {b_{1}}{b_{3}}+ \dfrac {b_{2}}{b_{4}}+..+ \dfrac {b_{n}}{b_{n+2}} < \dfrac { \sqrt {6}}{6}\).
            • 4.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=k(3^{n}-1)\),且\(a_{3}=27\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}=\log _{3}a_{n}\),求数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和\(T_{n}\).
            • 5.
              正项数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}^{2}-(n^{2}+n-1)S_{n}-(n^{2}+n)=0\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式\(a_{n}\);
              \((2)\)令\(b\;_{n}= \dfrac {n+1}{(n+2)^{2}a_{n}^{2}}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}.\)证明:对于任意\(n∈N^{*}\),都有\(T\;_{n} < \dfrac {5}{64}\).
            • 6.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=2a_{n}-2(n∈2N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)求数列\(\{S_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 7.
              已知数列\(\{a_{n}\}\)中,\(a_{1}=-1\),\(a_{n+1}=2a_{n}+3n-1(n∈N^{*})\),则其前\(n\)项和\(S_{n}=\) ______ .
            • 8.
              设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=2\),\(a_{n+1}=2+S_{n}\),\((n∈N^{*}).\)
              \((I)\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}=1+\log _{2}(a_{n})^{2}\),求数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和\(T_{n} < \dfrac {1}{6}\).
            • 9.
              已知正项数列\(\{a_{n}\}\)满足:\(4S_{n}= a_{ n }^{ 2 }+2a_{n}-3\),其中\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {1}{ a_{ n }^{ 2 }-1}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 10. 设数列{an}是等比数列,,公比q是的展开式中的第二项(按x的降幂排列).
              (1)求a1
              (2)用n,x表示数列{an}的通项an和前n项和Sn
              (3)若,用n,x表示An
            0/40

            进入组卷