优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 用数学归纳法证明等式:\(n∈N\),\(n\geqslant 1\),\(1- \dfrac {1}{2}+ \dfrac {1}{3}- \dfrac {1}{4}+\cdots + \dfrac {1}{2n-1}- \dfrac {1}{2n}= \dfrac {1}{n+1}+ \dfrac {1}{n+2}+\cdots + \dfrac {1}{2n}\).
            • 2.

              设\(f(n)=1+ \dfrac{1}{2}+ \dfrac{1}{3}+…+ \dfrac{1}{n}(n∈N^{*}).\)用数学归纳法证明:\(f(1)+f(2)+…+f(n-1)=n[f(n)-1](n\geqslant 2,n∈N^{*}).\)

            • 3.

              已知各项均为正数的数列\(\{a_{n}\}\)的首项\(a_{1}=1\),\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,且满足:\(a_{n}S_{n+1}-a_{n+1}S_{n}+a_{n}-a_{n+1}=λa_{n}a_{n+1}(λ\neq 0,n∈N^{*}).\)

              \((1)\) 若\(a_{1}\),\(a_{2}\),\(a_{3}\)成等比数列,求实数\(λ\)的值\(;\)

              \((2)\) 若\(λ=\dfrac{1}{2}\),求\(S_{n}\).

            • 4.

              设\(i\)为虚数单位,\(n\)为正整数,\(θ∈[0,2π)\).

              \((1)\)用数学归纳法证明:\((\cos θ+i \sin θ)\)”\(=\cos nθ+i \sin nθ\);

              \((2)\)已知\(z=\sqrt{3}+i\),试利用\((1)\)的结论计算\(z^{10}\);

              \((3)\)设复数\(z=a+bi(a,b∈R,a^{2}+b^{2}\neq 0)\),求证:\(\left| {{z}^{n}} \right|={{\left| z \right|}^{n}}(n∈N﹡)\).

            • 5.

              设\(f(k)\)是定义在正整数集上的函数,满足“只要\(f(k)\geqslant k^{2}\)成立就能推出\(f(k+1)\geqslant (k+1)^{2}\)成立”,则下列命题总成立的是  \((\)    \()\)

              A.若\(f(1) < 1\)成立,则\(f(10) < 100\)成立
              B.若\(f(2) < 4\)成立,则\(f(1)\geqslant 1\)成立
              C.若\(f(3)\geqslant 9\)成立,则当\(k\geqslant 1\)时,均有\(f(k)\geqslant k^{2}\)成立
              D.若\(f(4)\geqslant 25\)成立,则当\(k\geqslant 4\)肘,均有\(f(k)\geqslant k^{2}\)成立
            • 6.

              用数学归纳法证明“\((n+1)(n+2)\cdots (n+n)={{2}^{n}}\cdot 1\cdot 2\cdot \cdots \cdot (2n-1)\)”\((n\in {{N}_{+}})\)时,从“\(n=k到n=k+1 \)”时,左边的式子之比是(    )

              A.\(\dfrac{1}{2k+1}\)
              B.\(\dfrac{2k+3}{k+1}\)
              C.\(\dfrac{2k+1}{k+1}\)       
              D.\(\dfrac{1}{2(2k+1)}\)
            • 7.

              已知数列\(\left\{{b}_{n}\right\} \)是等差数列,\({b}_{1}=1,{b}_{1}+{b}_{2}+…+{b}_{10}=145 \).

              \((1)\)求数列\(\left\{{b}_{n}\right\} \)的通项公式\({b}_{n} \);

              \((2)\)设数列\(\left\{{a}_{n}\right\} \)的通项\({a}_{n}={\log }_{a}\left(1+ \dfrac{1}{{b}_{n}}\right) (\)其中\(a > 0\)且\(a\neq 1 )\)记\({S}_{n} \)是数列\(\left\{{a}_{n}\right\} \)的前\(n\)项和,试比较\({S}_{n} \)与\(\dfrac{1}{3}{\log }_{a}{b}_{n+1} \)的大小,并证明你的结论.

            • 8.

              用数学归纳法证明“\(\left(n+1\right)\left(n+2\right)...\left(n+n\right)={2}^{n}·1·2...\left(2n-1\right) \)”\((n∈{N}_{+} )\)时,从 “\(n=k\)到\(n=k+1\)”时,左边应增添的式子是\((\)   \()\)

              A.\(2k+1\)         
              B.\(\dfrac{2k+2}{k+1} \)
              C.\(\dfrac{2k+1}{k+1} \)
              D.\(2\left(2k+1\right) \)
            • 9.

              用数学归纳法证明\(1+2+2^{2}+…+2^{n-1}=2^{n}-1(n∈N^{*})\)的过程中,第二步假设\(n=k\)时结论成立,则当\(n=k+1\)时应得到  \((\)    \()\)

              A.\(1+2+2^{2}+…+2^{k-2}+2^{k-1}=2^{k+1}-1\)
              B.\(1+2+2^{2}+…+2^{k}+2^{k+1}=2^{k-1}+2^{k+1}\)
              C.\(1+2+2^{2}+…+2^{k-1}+2^{k+1}=2^{k+1}-1\)
              D.\(1+2+2^{2}+…+2^{k-1}+2^{k}=2^{k+1}-1\)
            • 10.

              若命题\(P(k)\)是\( \dfrac{1+{a}^{2}+{a}^{4}+⋯+{a}^{2k}}{a+{a}^{3}+⋯+{a}^{2k-1}} > \dfrac{k+1}{k}\left(a > 0,a\neq 1,k∈{N}^{*}\right) \),则命题\(P(k+1)\)是________.

            0/40

            进入组卷