优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              在正项数列\(\{a_{n}\}\)中,已知\(1\leqslant a_{1}\leqslant 11\),\(a_{n+1}^{2}=133-12a_{n}\),\(n∈N^{*}\).
              \((\)Ⅰ\()\)求证:\(1\leqslant a_{n}\leqslant 11\);
              \((\)Ⅱ\()\)设\(b_{n}=n(a_{2n-1}+a_{2n})\),\(S_{n}\)表示数列\(\{b_{n}\}\)前\(n\)项和,求证:\(S_{n}\geqslant 6n(n+1)\);
              \((\)Ⅲ\()\)若\(a_{1}=8\),设\(c_{n}=a_{2n-1}-a_{2n}\),\(T_{n}\)表示数列\(\{c_{n}\}\)前\(n\)项和.
              \((i)\)比较\(a_{n}\)与\(7\)的大小;
              \((ii)\)求证:\(T_{n} < 13\).
            • 2.
              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,\(a_{1}=3\),且\(2S_{n}=a_{n+1}-3(n∈N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)对于正整数\(i\),\(j\),\(k(i < j < k)\),已知\(λa_{j}\),\(6a_{i}\),\(μa_{k}\)成等差数列,求正整数\(λ\),\(μ\)的值;
              \((3)\)设数列\(\{b_{n}\}\)前\(n\)项和是\(T_{n}\),且满足:对任意的正整数\(n\),都有等式\(a_{1}b_{n}+a_{2}b_{n-1}+a_{3}b_{n-2}+…+a_{n}b_{1}=3^{n+1}-3n-3\)成立\(.\)求满足等式\( \dfrac {T_{n}}{a_{n}}= \dfrac {1}{3}\)的所有正整数\(n\).
            • 3.
              已知数列\(\{a_{n}\}\)满足\(a_{n+1}+(-1)^{n}a_{n}= \dfrac {n+5}{2}(n∈N^{*})\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\).
              \((1)\)求\(a_{1}+a_{3}\)的值;
              \((2)\)若\(a_{1}+a_{5}=2a_{3}\).
              \(①\)求证:数列\(\{a_{2n}\}\)为等差数列;
              \(②\)求满足\(S_{2p}=4S_{2m}(p,m∈N^{*})\)的所有数对\((p,m)\).
            • 4.
              已知等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{3}=7\),\(S_{9}=27\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}=|a_{n}|\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 5.
              已知等差数列\(\{a_{n}\}\)满足:\(a_{3}=7\),\(a_{5}+a_{7}=26\),\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\).
              \((\)Ⅰ\()\)求\(a_{n}\)及\(S_{n}\);
              \((\)Ⅱ\()\)令\(b_{n}= \dfrac {1}{a_{n}^{2}-1}(n∈N^{*})\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 6.
              等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),已知\(a_{1}=10\),\(a_{2}\)为整数,且\(S_{n}\leqslant S_{4}\).
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 7.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=1\),\(a_{2}=2\),且\(a_{n+2}-2a_{n+1}+a_{n}=0(n∈N^{*})\),记\(T_{n}= \dfrac {1}{S_{1}}+ \dfrac {1}{S_{2}}+…+ \dfrac {1}{S_{n}}(n∈N^{*})\),则\(T_{2018}=(\)  \()\)
              A.\( \dfrac {4034}{2018}\)
              B.\( \dfrac {2017}{2018}\)
              C.\( \dfrac {4036}{2019}\)
              D.\( \dfrac {2018}{2019}\)
            • 8.
              已知数列\(\{a_{n}\}\)满足\(0 < a_{1} < 1\),\(a_{n+1}=a_{n}-\ln (1+a_{n})\),\(n∈N*\).
              \((1)\)证明:\(0 < a_{n} < 1\);
              \((2)\)证明:\(2a_{a+1} < a_{ n }^{ 2 }\);
              \((3)\)若\(a_{1}= \dfrac {1}{2}\),记数列\(\{a_{n}\}\)的前项和为\(S_{n}\),证明:\(S_{n} < \dfrac {3}{4}\).
            • 9.
              已知函数\(f(x)=A\sin (ωx+φ)+b(A > 0,ω > 0,0 < φ < π,b\)为常数\()\)的一段图象如图所示.
              \((1)\)求函数\(f(x)\)的解析式;
              \((2)\)函数\(f(x)\)在\(y\)轴右侧的极小值点的横坐标组成数列\(\{a_{n}\}\),设右侧的第一个极小值点的横坐标为首项为\(a_{1}\),试求数列\(\{ \dfrac {1}{a_{n}a_{n+1}}\}\)的前\(n\)项和\(S_{n}\).
            • 10.
              已知等差数列\(\{a_{n}\}\)的首项为\(1\),公差为\(d\),数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),且对任意的\(n∈N^{*}\),\(6S_{n}=9b_{n}-a_{n}-2\)恒成立.
              \((1)\)如果数列\(\{S_{n}\}\)是等差数列,证明数列\(\{b_{n}\}\)也是等差数列;
              \((2)\)如果数列\(\{b_{n}+ \dfrac {1}{2}\}\)为等比数列,求\(d\)的值;
              \((3)\)如果\(d=3\),数列\(\{c_{n}\}\)的首项为\(1\),\(c_{n}=b_{n}-b_{n-1}(n\geqslant 2)\),证明数列\(\{a_{n}\}\)中存在无穷多项可表示为数列\(\{c_{n}\}\)中的两项之和.
            0/40

            进入组卷