优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              三个数列\(\{a_{n}\}\),\(\{b_{n}\}\),\(\{c_{n}\}\),满足\(a_{1}=- \dfrac {11}{10}\),\(b_{1}=1\),\(a_{n+1}= \dfrac {|a_{n}-1|+ \sqrt { a_{ n }^{ 2 }-2a_{n}+5}}{2}\),\(b_{n+1}=2b_{n}+1\),\(c_{n}=a\;_{b_{n}}\),\(n∈N*\).
              \((\)Ⅰ\()\)证明:当\(n\geqslant 2\)时,\(a_{n} > 1\);
              \((\)Ⅱ\()\)是否存在集合\([a,b]\),使得\(c_{n}∈[a,b]\)对任意\(n∈N*\)成立,若存在,求出\(b-a\)的最小值;若不存在,请说明理由;
              \((\)Ⅲ\()\)求证:\( \dfrac {2^{2}}{c_{2}}+ \dfrac {2^{3}}{c_{3}}+…+ \dfrac {2^{n}}{c_{n}}\leqslant 2^{n+1}+c_{n+1}-6(n∈N*,n\geqslant 2)\).
            • 2.

              设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且方程\(x^{2}-a_{n}x-a_{n}=0\)有一根为\(S_{n}-1(n∈N^{*}).\)

              \((1)\)求\(a_{1}\),\(a_{2}\);

              \((2)\)猜想数列\(\{S_{n}\}\)的通项公式,并给出证明.

            • 3. 已知函数\(f(x)= \dfrac {3}{2}x+\ln (x-1)\),设数列\(\{a_{n}\}\)同时满足下列两个条件:\(①a_{n} > 0(n∈N^{*})\);\(②a_{n+1}=f′(a_{n}+1)\).
              \((\)Ⅰ\()\)试用\(a_{n}\)表示\(a_{n+1}\);
              \((\)Ⅱ\()\)记\(b_{n}=a_{2n}(n∈N^{*})\),若数列\(\{b_{n}\}\)是递减数列,求\(a_{1}\)的取值范围.
            • 4.

              已知\(n∈N*\),求证:\(1·2^{2}-2·3^{2}+…+(2n-1)·(2n)^{2}-2n·(2n+1)^{2}=-n(n+1)(4n+3)\).

            • 5.
              试用数学归纳法证明\( \dfrac {1}{2^{2}}+ \dfrac {1}{3^{2}}+…+ \dfrac {1}{(n+1)^{2}} > \dfrac {1}{2}- \dfrac {1}{n+2}\).
            • 6.

              设\(f(n)=1+ \dfrac{1}{2}+ \dfrac{1}{3}+…+ \dfrac{1}{n}(n∈N^{*}).\)用数学归纳法证明:\(f(1)+f(2)+…+f(n-1)=n[f(n)-1](n\geqslant 2,n∈N^{*}).\)

            • 7.

              已知各项均为正数的数列\(\{a_{n}\}\)的首项\(a_{1}=1\),\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,且满足:\(a_{n}S_{n+1}-a_{n+1}S_{n}+a_{n}-a_{n+1}=λa_{n}a_{n+1}(λ\neq 0,n∈N^{*}).\)

              \((1)\) 若\(a_{1}\),\(a_{2}\),\(a_{3}\)成等比数列,求实数\(λ\)的值\(;\)

              \((2)\) 若\(λ=\dfrac{1}{2}\),求\(S_{n}\).

            • 8.

              用数学归纳法证明“\(\left(n+1\right)\left(n+2\right)...\left(n+n\right)={2}^{n}·1·2...\left(2n-1\right) \)”\((n∈{N}_{+} )\)时,从 “\(n=k\)到\(n=k+1\)”时,左边应增添的式子是\((\)   \()\)

              A.\(2k+1\)         
              B.\(\dfrac{2k+2}{k+1} \)
              C.\(\dfrac{2k+1}{k+1} \)
              D.\(2\left(2k+1\right) \)
            • 9.

              用数学归纳法证明不等式“\(\dfrac{1}{n+1} +\dfrac{1}{n+2} +…+\dfrac{1}{2n} > \dfrac{13}{24}(n > 2)\)”时的过程中,由\(n=k\)到\(n=k+1\),\((k > 2)\)时,不等式的左边   \((\)    \()\)

              A.增加了一项\(\dfrac{1}{2\left(k+1\right)} \)
              B.增加了两项\(\dfrac{1}{2k+1} +\dfrac{1}{2\left(k+1\right)} \)
              C.增加了一项\(\dfrac{1}{2\left(k+1\right)} \),又减少了一项\(\dfrac{1}{k+1} \)
              D.增加了两项\(\dfrac{1}{2k+1} +\dfrac{1}{2\left(k+1\right)} \),又减少了一项\(\dfrac{1}{k+1} \)
            • 10.

              已知函数\(f(x)=\dfrac{3x}{ax+b}\),\(f(1)=1\),\(f(\dfrac{1}{2})=\dfrac{3}{4}\),数列\(\{x_{n})\)满足\({{x}_{1}}=\dfrac{3}{2}\),\(x_{n+1}=f(x_{n}).\)

              \((1)\)求\(x_{2}\),\(x_{3}\)的值;

              \((2)\)求数列\(\{x_{n}\}\)的项公式;

              \((3)\)证明:\(\dfrac{{{x}_{1}}}{3}+\dfrac{{{x}_{2}}}{{{3}^{2}}}+...+\dfrac{{{x}_{n}}}{{{3}^{n}}} < \dfrac{3}{4}\).

            0/40

            进入组卷