优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 设数列{an}的前n项和为Sn,d为常数,已知对∀n,m∈N*,当n>m,总有Sn-Sm=Sn-m+m(n-m)d成立
              (1)求证:数列{an}是等差数列;
              (2)探究:命题p:“对∀n,m∈N*,当n>m时,总有Sn-Sm=Sn-m+m(n-m)d”是命题q:“数列{an}是等差数列”的充要条件吗?请证明你的结论;
              (3)若正整数n,m,k成等差数列,比较Sn+Sk与2Sm的大小,并说明理由.
            • 2. 设数列{an}的各项均为正数,{an}的前n项和Sn=
              1
              4
              (an+1)2
              ,n∈N*
              (1)求证:数列{an}为等差数列;
              (2)等比数列{bn}的各项均为正数,bnbn+1Sn2,n∈N*,且存在整数k≥2,使得bkbk+1=Sk2
              (i)求数列{bn}公比q的最小值(用k表示);
              (ii)当n≥2时,bnN*,求数列{bn}的通项公式.
            • 3. 已知数列{an}满足:a1a2…an=1-an,n∈N*
              (1)证明:{
              1
              1-an
              }是等差数列,并求数列{an}的通项公式;
              (2)记Tn=
              1(n=1)
              a1a2an-1(n≥2)
              (n∈N*),Sn=T1+T2+…+Tn,证明:
              1
              2
              ≤S2n-Sn
              3
              4
            • 4. 已知数列{an}的前n项和Sn=-an-(
              1
              2
              )n-1+2
              ,bn=2nan,cn=2an+1-an(n∈N*)则(  )
              A.{bn}是等差数列,{cn}是等比数列
              B.{bn}是等比数列,{cn}是等差数列
              C.{bn}是等差数列,{cn}是等差数列
              D.{bn}是等比数列,{cn}是等比数列
            • 5. 在数列{bn}中,an+3=an+3(n∈N+),a1=1,Sn是其前n项和.记bn=
              n+acSn+a
              (a≥0,c>0,c≠1).
              (1)设数列{a3n-2}(n∈N+)的前n项和Tn,求Tn表达式;
              (2)若S15=15a8=120,证明:{an}以为等差数列:
              (3)若数列{bn}为等比数列,求数列{an}的通项公式,并求此时实数a的值.
            • 6. 已知各项均不为零的数列{an}满足a1=a(a>0),当n≥2时,an,0,Sn•Sn-1成等差数列,其中Sn为数列{an}前n项和.
              (1)用a表示a2,a3
              (2)求数列{an}的通项公式(用a表示);
              (3){an}中是否存在连续的三项ak-1,ak,ak+1为等差数列?若存在,求出k及对应的a的值;若不存在,请说明理由.
            • 7. 已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn-1+kan=tan2-1,n≥2,n∈N*(其中k,t为常数).
              (1)若k=
              1
              2
              ,t=
              1
              4
              ,数列{an}是等差数列,求a1的值;
              (2)若数列{an}是等比数列,求证:k<t.
            • 8. 设各项均为正数的数列{an}满足
              Sn
              an
              =pn+r(p,r为常数),其中Sn为数列{an}的前n项和.
              (1)若p=1,r=0,求证:{an}是等差数列;
              (2)若p=
              1
              3
              ,a1=2,求数列{an}的通项公式;
              (3)若a2015=2015a1,求p•r的值.
            • 9. 已知数列{an}的前n项和为Sn,且a1=1,4anan-1+Sn=Sn-1+an-1(n≥2,n∈N*).
              (1)证明:数列{
              1
              an
              }是等差数列;
              (2)若
              an
              λ
              +
              1
              an+1
              1
              λ
              对任意整数n(n≥2)恒成立,求实数λ的取值范围.
            • 10. 已知数列{an}的前n项和为Sn,a1=3,an+1=2an+2n+1-1(n∈N*).
              (1)求a2,a3
              (2)求实数λ使{
              an
              2n
              }为等差数列,并由此求出an与Sn
              (3)求n的所有取值,使
              Sn
              an
              ∈N*,说明你的理由.
            0/40

            进入组卷