优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)经过点\(P(1, \dfrac {3}{2})\),离心率\(e= \dfrac {1}{2}\),直线\(l\)的方程为\(x=4\).
              \((1)\)求椭圆\(C\)的方程;
              \((2)AB\)是经过右焦点\(F\)的任一弦\((\)不经过点\(P)\),设直线\(AB\)与直线\(l\)相交于点\(M\),记\(PA\),\(PB\),\(PM\)的斜率分别为\(k_{1}\),\(k_{2}\),\(k_{3}.\)问:是否存在常数\(λ\),使得\(k_{1}+k_{2}=λk_{3}\)?若存在,求\(λ\)的值;若不存在,说明理由.
            • 2.
              已知抛物线\(y^{2}=8x\)的焦点恰好是椭圆\( \dfrac {x^{2}}{a^{2}}+y^{2}=1(a > 0)\)的右焦点,则椭圆方程为 ______ .
            • 3.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)经过\((1,1)\)与\(( \dfrac { \sqrt {6}}{2}, \dfrac { \sqrt {3}}{2})\)两点.
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)过原点的直线\(l\)与椭圆\(C\)交于\(A\)、\(B\)两点,椭圆\(C\)上一点\(M\)满足\(|MA|=|MB|.\)求证:\( \dfrac {1}{|OA|^{2}}+ \dfrac {1}{|OB|^{2}}+ \dfrac {2}{|OM|^{2}}\)为定值.
            • 4.
              已知\(F_{1}\)、\(F_{2}\)是椭圆\( \dfrac {x^{2}}{16}+ \dfrac {y^{2}}{9}=1\)的两焦点,经点\(F_{2}\)的直线交椭圆于点\(A\)、\(B\),若\(|AB|=5\),则\(|AF_{1}|+|BF_{1}|\)等于\((\)  \()\)
              A.\(16\)
              B.\(11\)
              C.\(8\)
              D.\(3\)
            • 5.
              如图,在平面直角坐标系\(xOy\)中,椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的离心率为\( \dfrac { \sqrt {2}}{2}\),过椭圆右焦点\(F\)作两条互相垂直的弦\(AB\)与\(CD.\)当直线\(AB\)斜率为\(0\)时,\(|AB|+|CD|=3 \sqrt {2}\).
              \((\)Ⅰ\()\)求椭圆的方程;
              \((\)Ⅱ\()\)求由\(A\),\(B\),\(C\),\(D\)四点构成的四边形的面积的取值范围.
            • 6.
              椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点分别为\(F_{1}\),\(F_{2}\),\(M\)在椭圆上,\(\triangle MF_{1}F_{2}\)的周长为\(2 \sqrt {5}+4\),面积的最大值为\(2\).
              \((I)\)求椭圆\(C\)的方程;
              \((II)\)直线\(y=kx(k > 0)\)与椭圆\(C\)交于\(A\),\(B\),连接\(AF_{2}\),\(BF_{2}\)并延长交椭圆\(C\)于\(D\),\(E\),连接\(DE.\)探索\(AB\)与\(DE\)的斜率之比是否为定值并说明理由.
            • 7.
              设\(F_{1}\),\(F_{2}\)为定点,\(|F_{1}F_{2}|=6\),动点\(M\)满足\(|MF_{1}|+|MF_{2}|=6\),则动点\(M\)的轨迹是\((\)  \()\)
              A.椭圆
              B.直线
              C.圆
              D.线段
            • 8.
              已知椭圆的中心在原点,左焦点为\(F_{1}(- \sqrt {3},0)\),且右顶点为\(D(2,0).\)设点\(A\)的坐标是\((1, \dfrac {1}{2})\)
              \((1)\)求该椭圆的标准方程;
              \((2)\)若\(P\)是椭圆上的动点,求线段\(PA\)的中点\(M\)的轨迹方程.
            • 9.
              已知椭圆\(E\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点分别为,点\(P\)是椭圆\(E\)上的一个动点,\(\triangle PF_{1}F_{2}\)的周长为\(6\),且存在点\(P\)使得,\(\triangle PF_{1}F\)为正三角形.
              \((1)\)求椭圆\(E\)的方程;
              \((2)\)若\(A\),\(B\),\(C\),\(D\)是椭圆\(E\)上不重合的四个点,\(AC\)与\(BD\)相交于点\(F_{1}\),且\( \overrightarrow{AC}\cdot \overrightarrow{BD}=0.\)若\(AC\)的斜率为\( \sqrt {3}\),求四边形\(ABCD\)的面积.
            • 10.
              如图,\(F_{1}\),\(F_{2}\)分别是椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点,且焦距为\(2 \sqrt {2}\),动弦\(AB\)平行于\(x\)轴,且\(|F_{1}A|+|F_{1}B|=4\).
              \((1)\)求椭圆\(C\)的方程;
              \((2)\)若点\(P\)是椭圆\(C\)上异于点\(A\),\(B\)的任意一点,且直线\(PA\)、\(PB\)分别与\(y\)轴交于点\(M\)、\(N\),若\(MF_{2}\)、\(NF_{2}\)的斜率分别为\(k_{1}\)、\(k_{2}\),求证:\(k_{1}⋅k_{2}\)是定值.
            0/40

            进入组卷