优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 设\(0 < \)\(a\)\(\leqslant \)\(b\)\(\leqslant \)\(c\)\(abc\)\(=1.\)试求\(\dfrac{1}{{a}^{2}(b+c)} \) \(+ \dfrac{1}{b^{3}(a+c)}+ \dfrac{1}{c^{3}(a+b)}\)的最小值.
            • 2.

              用反证法证明数学命题时,首先应该做出与命题结论相反的假设,否定“自然数\(a\ ,\ b\ ,\ c\)中恰有一个偶数”时正确的反设为                          \((\)   \()\)

              A.自然数\(a\ ,\ b\ ,\ c\)都是奇数           
              B.自然数\(a\ ,\ b\ ,\ c\)至少有两个偶数或都是奇数
              C.自然数\(a\ ,\ b\ ,\ c\)都是偶数\({\,\!}^{\;\;}\)
              D.自然数\(a\ ,\ b\ ,\ c\)至少有两个偶数        
            • 3.

              已知点\({{P}_{n}}({{a}_{n}},{{b}_{n}})(n\in {{N}^{+}})\)在直线\(l:y=3x+1\)上,\({{P}_{1}}\)是直线\(l\)与\(y\)轴的交点,数列\(\left\{ {{a}_{n}} \right\}\)是公差为\(1\)的等差数列.

              \((\)Ⅰ\()\)求数列\(\left\{ {{a}_{n}} \right\}\),\(\left\{ {{b}_{n}} \right\}\)的通项公式;

              \((\)Ⅱ\()\)求证:\(\dfrac{1}{{{\left| {{P}_{1}}{{P}_{2}} \right|}^{2}}}+\dfrac{1}{{{\left| {{P}_{1}}{{P}_{3}} \right|}^{2}}}+......+\dfrac{1}{{{\left| {{P}_{1}}{{P}_{n+1}} \right|}^{2}}} < \dfrac{1}{5}\)

            • 4.

              如果无穷数列\(\{{{a}_{n}}\}\)满足下列条件:\(①\dfrac{{{a}_{n}}+{{a}_{n+2}}}{2}\leqslant {{a}_{n+1}}\);\(②\)存在实数\(M\),使得\({{a}_{n}}\leqslant M\),其中\(n\in {{N}^{*}}\),那么我们称数列\(\{{{a}_{n}}\}\)为\(\Omega \)数列.

              \((1)\)设数列\(\{{{b}_{n}}\}\)的通项为\({{b}_{n}}=5n-{{2}^{n}}\),且是\(\Omega \)数列,求\(M\)的取值范围;

              \((2)\)设\(\{{{c}_{n}}\}\)是各项为正数的等比数列,\({{S}_{n}}\)是其前\(n\)项和,\({{c}_{3}}=\dfrac{1}{4},{{S}_{3}}=\dfrac{7}{4}\),证明:数列\(\{{{S}_{n}}\}\)是\(\Omega \)数列;

              \((3)\)设数列\(\{{{d}_{n}}\}\)是各项均为正整数的\(\Omega \)数列,求证:\({{d}_{n}}\leqslant {{d}_{n+1}}\).

            • 5.

              \((1)\)求证:\(1+ \dfrac{1}{{2}^{2}}+ \dfrac{1}{{3}^{2}}+⋯+ \dfrac{1}{{n}^{2}} < 2- \dfrac{1}{n} (n∈N^{*},n\geqslant 2)\)

              \((2)\)设\(a\),\(b\),\(c∈R\),证明:\(a^{2}+b^{2}+c^{2}\geqslant ab+ac+bc\).

            • 6.

              如果非零实数\(a,b,c \) 两两不相等,且\(2b=a+c .\)证明:\( \dfrac{2}{b}\neq \dfrac{1}{a}+ \dfrac{1}{c} \).

            • 7.
              用反证法证明命题“三角形的内角中至多有一个钝角”时,假设正确的是\((\)  \()\)
              A.三个内角中至少有一个钝角
              B.三个内角中至少有两个钝角
              C.三个内角都不是钝角
              D.三个内角都不是钝角或至少有两个钝角
            • 8.

              正数数列\(\left\{{a}_{n}\right\} \)、\(\left\{{b}_{n}\right\} \)满足:\({a}_{1}\geqslant {b}_{1} \),且对一切\(k\geqslant 2,k∈{N}^{*} \),\({a}_{k} \)是\({a}_{k-1} \)与\({b}_{k-1} \)的等差中项,\({b}_{k} \)是\({a}_{k-1} \)与\({b}_{k-1} \)的等比中项.

              \((1)\)若\({a}_{2}=2,{b}_{2}=1 \),求\({a}_{1},{b}_{1} \)的值;

              \((2)\)求证:\(\left\{{a}_{n}\right\} \)是等差数列的充要条件是\(\left\{{a}_{n}\right\} \)为常数数列;

              \((3)\)记\({c}_{n}=\left|{a}_{n}-{b}_{n}\right| \),当\(n\geqslant 2\left(n∈{N}^{*}\right) \)时,指出\({c}_{2}+⋯+{c}_{n} \)与\({c}_{1} \)的大小关系并说明理由.

            • 9.

              设各项均为正数的数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}\)满足\(S_{n}^{2}-\left( {{n}^{2}}+n-3 \right){{S}_{n}}-3\left( {{n}^{2}}+n \right)=0\) ,\(n∈N*\).

              \((1)\)求\(a_{1}\)的值;

              \((2)\)求数列\(\{a_{n}\}\)的通项公式;

              \((3)\)证明:对一切正整数\(n\),有\(\dfrac{1}{{{a}_{1}}\left( {{a}_{1}}+1 \right)}+\dfrac{1}{{{a}_{2}}\left( {{a}_{2}}+1 \right)}+\cdots +\dfrac{1}{{{a}_{n}}\left( {{a}_{n}}+1 \right)} < \dfrac{1}{3}\) .

            • 10.
              用反证法证明:“\(a > b\)”,应假设为\((\)  \()\)
              A.\(a > b\)
              B.\(a < b\)
              C.\(a=b\)
              D.\(a\leqslant b\)
            0/40

            进入组卷