优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              曲线\(y=\sqrt{x}\)上点\({{P}_{1}},{{P}_{2}},\cdots {{P}_{n}}\)与\(x\)轴上点\({{Q}_{1}},{{Q}_{2}},\cdots {{Q}_{n}}\)构成一列正三角形,即\(\Delta O{{P}_{1}}{{Q}_{1}},\Delta {{Q}_{1}}{{P}_{2}}{{Q}_{2}},\cdots \Delta {{Q}_{n-1}}{{P}_{n}}{{Q}_{n}}\),设\(\Delta O{{P}_{1}}{{Q}_{1}}\)的边长为\({{a}_{1}}\),正三角形\(\Delta {{Q}_{n-1}}{{P}_{n}}{{Q}_{n}}\)的边长为\({{a}_{n}}\)


              \((1)\)求\({{a}_{1}},{{a}_{2}}\)

              \((2)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式

              \((3)\)证明:\(\dfrac{1}{{{a}_{1}}^{2}}+\dfrac{1}{{{a}_{2}}^{2}}+\cdots +\dfrac{1}{{{a}_{n}}^{2}} < \dfrac{63}{16}\)

            • 2. 已知函数\(f(x){=}x{-}1{-}a\ln x\).
              \((1)\)若\(f(x){\geqslant }0\),求\(a\)的值;
              \((2)\)设\(m\)为整数,且对于任意正整数\(n{,}(1{+}\dfrac{1}{2})(1{+}\dfrac{1}{2^{2}}){…}(1{+}\dfrac{1}{2^{n}}){ < }m\),求\(m\)的最小值.
            • 3.

              已知函数\(f(x)=\dfrac{m\ln x+n}{{{e}^{x}}}\) \((m\)、\(n\)为常数,\(e= 2.718 28…\)是自然对数的底数\()\),曲线\(y=f(x)\)在点\((1,f(1))\)处的切线方程是\(y=\dfrac{2}{e}\).

              \((1)\)求\(m\)、\(n\)的值;

              \((2)\)求\(f(x)\)的最大值;

              \((3)\)设\(g(x)={f}{{{'}}}(x)\cdot \dfrac{{{e}^{x}}\ln (x+1)}{2}\) \((\)其中\({f}{{{'}}}(x)\)为\(f(x)\)的导函数\()\),证明:对任意\(x > 0\),都有\(g(x) < 1+{{e}^{-2}}.\)  \((\)注:\({{\left[ \ln (x+1) \right]}^{\prime }}=\dfrac{1}{x+1})\)

            • 4.

              已知曲线\(f(x)=\dfrac{{\log }_{2}\left(x+1\right)}{x+1} (x > 0)\)上有一点列\(P_{n}(x_{n},y_{n})(n∈N*)\),过点\(P_{n}\)在\(x\)轴上的射影是\(Q_{n}(x_{n},0)\),且\(x_{1}+x_{2}+x_{3}+…+x_{n}=2^{n+1}-n-2.(n∈N*)\)

              \((1)\)求数列\(\{x_{n}\}\)的通项公式;

              \((2)\)设四边形\(P_{n}Q_{n}Q_{n+1}P_{n+1}\)的面积是\(S_{n}\),求\(S_{n}\);

              \((3)\)在\((2)\)条件下,求证:\(\dfrac{1}{{S}_{1}} \) \(+\dfrac{1}{2{S}_{2}} +…+\dfrac{1}{n{S}_{n}} < 4\).

            • 5.

              观察下列式子:\(1+ \dfrac{1}{{2}^{2}} < \dfrac{3}{2},1+ \dfrac{1}{{2}^{2}}+ \dfrac{1}{{3}^{2}} < \dfrac{5}{3},1+ \dfrac{1}{{2}^{2}}+ \dfrac{1}{{3}^{2}}+ \dfrac{1}{{4}^{2}} < \dfrac{7}{4} \),

              \((\)Ⅰ\()\)由此猜想一个一般性的结论,

              \((\)Ⅱ\()\)请证明你的结论。

            • 6.

              数列\(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{n+1}= \dfrac{n+1}{2n}a_{n}(n∈N^{*}).\)

              \((1)\)证明:数列\(\left\{ \left. \dfrac{a_{n}}{n} \right. \right\}\)是等比数列,并求数列\(\{a_{n}\}\)的通项公式;

              \((2)\)设\(b_{n}= \dfrac{a_{n}}{4n-a_{n}}\),若数列\(\{b_{n}\}\)的前\(n\)项和是\(T_{n}\),求证:\(T_{n} < 2\).

            • 7.

              设函数\(f\)\((\)\(x\)\()=\dfrac{1-x}{ax}+\ln x\)在\([1,+∞)\)上为增函数\(.\)  

              \((1)\)求正实数\(a\)的取值范围;

              \((2)\)比较\( \dfrac{1}{n} \)与\(\ln \dfrac{n}{n-1}\left(n∈{N}^{*},n\geqslant 2\right) \)的大小,说明理由;

              \((3)\)求证:\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\cdots +\dfrac{1}{n} < \ln n(\)\(n∈N\)\(*\), \(n\)\(\geqslant 2)\)

            • 8.

              已知函数\(f\left( x \right)=x-1-a\ln x\) 。

              \((1)\)若\(f\left( x \right)\geqslant 0\),求\(a\)的值;

              \((2)\)设\(m\)为整数,且对于任意正整数\(n\),\(\left( 1+\dfrac{1}{2} \right)\left( 1+\dfrac{1}{{{2}^{2}}} \right)\cdots \left( 1+\dfrac{1}{{{2}^{n}}} \right) < m\) ,求\(m\)的最小值。

            • 9.

              已知每一项都是正数的数列\(\{a_{n}\}\)满足\(a_{1}=1\),\({{a}_{n+1}}=\dfrac{{{a}_{n}}+1}{12{{a}_{n}}}(n\in {{\mathbf{N}}^{*}})\).

              \((\)Ⅰ\()\)用数学归纳法证明:\(a_{2n+1} < a_{2n-1}\);

              \((\)Ⅱ\()\)证明:\(\dfrac{1}{6}\leqslant {{a}_{n}}\leqslant 1\);

              \((\)Ⅲ\()\)记\(S_{n}\)为数列\(\{|a+_{n+1}-a_{n}|\}\)的前\(n\)项和,证明:\(S_{n} < 6(n∈N^{*}).\)

            • 10.

              已知函数\(f(x)={{e}^{x}}-a(x+1)\)\(x=\ln 2\)处的切线的斜率为\(1.(e\)为无理数,\(e=2.71828… )\)

              \((1)\)求\(a\)的值及\(f(x)\)的最小值;

              \((2)\)当\(x\geqslant 0\)时,\(f(x)\geqslant m{{x}^{2}}\)恒成立,求\(m\)的取值范围;

              \((3)\)求证:\(\sum\limits_{i=2}^{n}{\dfrac{\ln i}{{{i}^{4}}}} < \dfrac{1}{2e}(i,n\in {{N}_{+}}).(\)参考数据:\(\ln 2\approx 0.6931)\)

            0/40

            进入组卷