优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              用数学归纳法证明\(\left( {1}+\dfrac{{1}}{{3}} \right)\left( {1}+\dfrac{{1}}{{5}} \right)\left( {1}+\dfrac{{1}}{{7}} \right)\ldots \left( {1}+\dfrac{{1}}{{2}n-{1}} \right) > \dfrac{\sqrt{{2}n+{1}}}{{2}}(n∈N^{*}\)且\(n\geqslant 2)\)

            • 2.

              已知数列\(\{ a_{n}\}\)满足\(a_{1}{=}1\),\(a_{n{+}1}{=}\dfrac{a_{n}}{1{+}{a_{n}}^{2}}\),\(a_{n{+}1}{=}\dfrac{a_{n}}{1{+}{a_{n}}^{2}}.\)记\(S_{n}\),\(T_{n}\)分别是数列\(\{ a_{n}\}\),\(\{{a_{n}}^{2}\}\)的前\(n\)项和,证明:当\(n{∈}\mathbf{N}^{\mathbf{{*}}}\)时,

              \((1)a_{n{+}1}{ < }a_{n}\);

              \((2)T_{n}{=}\dfrac{1}{{a_{n{+}1}}^{2}}{-}2n{-}1\);

              \((3)\sqrt{2n}{-}1{ < }S_{n}{ < }\sqrt{2n}\).

            • 3.

              已知各项都是正数的数列\(\{a_{n}\}\)满足\(a_{1}=1\),\({{a}_{n+1}}=\dfrac{{{a}_{n}}+1}{12{{a}_{n}}}(n\in {{N}^{{*}}})\).

              \((1)\)用数学归纳法证明:\(a_{2n+1} < a_{2n-1}\);

              \((2)\)证明:\(\dfrac{1}{6}\leqslant {{a}_{n}}\leqslant 1\);

              \((3)\)记\(S\)\({\,\!}_{n}\)为数列\(\{|a\)\({\,\!}_{n+1}\)\(-a\)\({\,\!}_{n}\)\(|\}\)的前\(n\)项和,证明:\(S\)\({\,\!}_{n}\)\( < 6(n∈N\)\({\,\!}^{*}\)\().\)

            • 4.

              已知数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{1}}=1\)且\({{a}_{n+1}}={{a}_{n}}+2n+1\),设数列\(\left\{ {{b}_{n}} \right\}\)满足\({{b}_{n}}={{a}_{n}}-1\),对任意正整数\(n\),不等式\(\dfrac{1}{{{b}_{2}}}+\dfrac{1}{{{b}_{3}}}+\bullet \bullet \bullet +\dfrac{1}{{{b}_{n}}} < m\)均成立,则实数\(m\)的取值范围为           

            • 5.

              已知数列\(\left\{ {{a}_{n}} \right\}\)满足\({{a}_{1}}=1\)\({{a}_{n+1}}=\dfrac{{{a}_{n}}}{1+a_{n}^{2}}\)\(n\in {{N}^{*}}\),记\({{S}_{n}}\)\({{T}_{n}}\)分别是数列\(\left\{ {{a}_{n}} \right\}\)\(\left\{ a_{n}^{2} \right\}\)的前\(n\)项和,证明:当\(n\in {{N}^{*}}\)时,\((1)\)\({{a}_{n+1}} < {{a}_{n}}\);\((2)\)\({{T}_{n}}=\dfrac{1}{a_{n+1}^{2}}-2n-1\);\((3)\)\(\sqrt{2n}-1 < {{S}_{n}} < \sqrt{2n}\)

            • 6.

              已知函数\(f(x)\) \(=x-1-a\ln x\).

              \((1)\)若\(a=2\),求\(y=f(x)\)在\((4,f(4))\)处的切线方程

              \((2)\)就\(a\in R\)讨论,\(f(x)\)的最小值,并求\(f(x)\geqslant 0\)时\(a\)的值;

              \((3)\)设\(m\)为整数,且对于任意正整数\(n\),\((1{+}\dfrac{1}{2})(1{+}\dfrac{1}{{{2}^{2}}})\ldots (1{+}\dfrac{1}{{{2}^{n}}})﹤m\),求\(m\)的最小值.

            • 7. 设数列\(\{a_{n}\}\)满足:\(a_{1}=2,a_{n+1}=a_{n}+ \dfrac {1}{a_{n}}(n\in N^{*})\).
              \((1)\)证明:\(a_{n} > \sqrt {2n+1}\)对\(n∈N^{*}\)恒成立;
              \((2)\)令\(b_{n}= \dfrac {a_{n}}{ \sqrt {n}}(n\in N^{*})\),判断\(b_{n}\)与\(b_{n+1}\)的大小,并说明理由.
            • 8.

              设\(S\)\({\,\!}_{n}\)是数列\(\{\)\(a_{n}\)\(\}\)的前\(n\)项和,\(a_{n}\)\( > 0\),且\(4S\)\({\,\!}_{n}\)\(=\)\(a_{n}\)\((\)\(a_{n}\)\(+2)\).

              \((\)Ⅰ\()\)求数列\(\{ \)\(a_{n}\)\(\}\)的通项公式;

              \((\)Ⅱ\()\)设\(b_{n}\)\(= \dfrac{1}{\left({a}_{n}-1\right)\left({a}_{n}\;+1\right)} \),\(T\)\({\,\!}_{n}\)\(=\)\(b\)\({\,\!}_{1}+\)\(b\)\({\,\!}_{2}+…+\)\(b_{n}\),求证:\(T\)\({\,\!}_{n}\)\( < \dfrac{1}{2} \).

            • 9.

              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(2S_{n}=3a_{n}-2n(n∈N^{+}).\)

              \((1)\)证明数列\(\{a_{n}+1\}\)是等比数列,并求数列\(\{a_{n}\}\)的通项公式;

              \((2)\)设\(b_{n}=a_{n}+2^{n}+1\),求证:\( \dfrac{1}{{b}_{1}}+ \dfrac{1}{{b}_{2}}+...+ \dfrac{1}{{b}_{n}} < \dfrac{1}{2}- \dfrac{1}{{2}^{n+1}} \).

            • 10.

              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(a_{n}+2S_{n}·S_{n-1}=0(n\geqslant 2)\),\(a_{1}= \dfrac{1}{2}\).

              \((1)\)求证:\(\{ \dfrac{1}{S_{n}}\}\)是等差数列;

              \((2)\)求\(a_{n}\)的表达式;

              \((3)\)若\(b_{n}=2(1-n)a_{n}(n\geqslant 2)\),求证:\(b\rlap{_{2}}{^{2}}+b\rlap{_{3}}{^{2}}+…+b\rlap{_{n}}{^{2}} < 1\).

            0/40

            进入组卷