优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)满足\(a_{7}=15\),且点\((a_{n},a_{n+1})(n∈N^{*})\)在函数\(y=x+2\)的图象上.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=3^{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 2.
              如果\(n\)项有穷数列\(\{a_{n}\}\)满足\(a_{1}=a_{n}\),\(a_{2}=a_{n-1}\),\(…\),\(a_{n}=a_{1}\),即\(a_{i}=a_{n-i+1}(i=1,2,…,n)\),则称有穷数列\(\{a_{n}\}\)为“对称数列”\(.\)例如,由组合数组成的数列\( C_{ n }^{ 0 }, C_{ n }^{ 1 },…, C_{ n }^{ n-1 }, C_{ n }^{ n }\)就是“对称数列”.
              \((\)Ⅰ\()\)设数列\(\{b_{n}\}\)是项数为\(7\)的“对称数列”,其中\(b_{1}\),\(b_{2}\),\(b_{3}\),\(b_{4}\)成等比数列,且\(b_{2}=3\),\(b_{5}=1.\)依次写出数列\(\{b_{n}\}\)的每一项;
              \((\)Ⅱ\()\)设数列\(\{c_{n}\}\)是项数为\(2k-1(k∈N^{*}\)且\(k\geqslant 2)\)的“对称数列”,且满足\(|c_{n+1}-c_{n}|=2\),记\(S_{n}\)为数列\(\{c_{n}\}\)的前\(n\)项和;
              \((ⅰ)\)若\(c_{1}\),\(c_{2}\),\(…c_{k}\)是单调递增数列,且\(c_{k}=2017.\)当\(k\)为何值时,\(S_{2k-1}\)取得最大值?
              \((ⅱ)\)若\(c_{1}=2018\),且\(S_{2k-1}=2018\),求\(k\)的最小值.
            • 3.

              已知数列\(\{{{a}_{n}}\}\)的前\(n\)项和为\({{S}_{n}}\),点\(\left( n,{{S}_{n}} \right)\)在函数\(f(x)={{x}^{2}}-2kx(k\in N)\)图象上,当且仅当\(n=4\)时,\({{S}_{n}}\)的值最小.

              \((\)Ⅰ\()\)求数列\(\{{{a}_{n}}\}\)的通项公式;

              \((\)Ⅱ\()\)令\({{c}_{n}}=\dfrac{{{a}_{n}}+9}{2}\),数列\(\{{{b}_{n}}\}\)满足\({{b}_{n}}=\dfrac{{{2}^{{{c}_{n}}}}}{({{2}^{{{c}_{n}}}}-1)({{2}^{{{c}_{n+1}}}}-1)}\),记数列\(\{{{b}_{n}}\}\)的前\(n\)项和为\({{T}_{n}}\),若\(2{{m}^{2}}-3m+\dfrac{5}{3}-{{T}_{n}}\leqslant 0\)恒成立,求实数\(m\)的取值范围.

            • 4.

              若正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),首项\(a_{1}=1\),\(P\left( \sqrt{{{S}_{n}}},{{S}_{n+1}} \right)\)点在曲线\(y=(x+1)^{2}\)上\(.\)

              \((1)\)求数列\(\{a_{n}\}\)的通项公式\(a_{n}\);

              \((2)\)设\({{b}_{n}}=\dfrac{1}{{{a}_{v}}\cdot {{a}_{n+1}}}\),\(T_{n}\)表示数列\(\{b_{n}\}\)的\(n\)项和,若\(T_{n}\geqslant a\)恒成立,求\(T_{n}\)及实数\(a\)的取值范围.

            • 5.
              已知:在数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}= \dfrac {a_{n}}{3a_{n}+1}\),判断\(\{a_{n}\}\)的单调性.
              小明同学给出了如下解答思路,请补全解答过程.
              第一步,计算:
              根据已知条件,计算出:\(a_{2}=\) ______ ,\(a_{3}=\) ______ ,\(a_{4}=\) ______ .
              第二步,猜想:
              数列\(\{a_{n}\}\)是 ______ \((\)填递增、递减\()\)数列.
              第三步,证明:
              因为\(a_{n+1}= \dfrac {a_{n}}{3a_{n}+1}\),所以\( \dfrac {1}{a_{n+1}}= \dfrac {3a_{n}+1}{a_{n}}= \dfrac {1}{a_{n}}+\) ______ .
              因此可以判断数列\(\{ \dfrac {1}{a_{n}}\}\)是首项\( \dfrac {1}{a_{1}}=\) ______ ,公差\(d=\) ______ 的等差数列.
              故数列\(\{ \dfrac {1}{a_{n}}\}\)的通项公式为 ______ .
              且由此可以判断出:
              数列\(\{ \dfrac {1}{a_{n}}\}\)是 ______ \((\)填递增、递减\()\)数列,且各项均为 ______ \((\)填正数、负数或零\()\).
              所以数列\(\{a_{n}\}\)是 ______ \((\)填递增、递减\()\)数列.
            • 6.

              对于无穷数列\(\{{{a}_{n}}\}\)\(\{{{b}_{n}}\}\),若\({{b}_{k}}=\max \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}-\min \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}(k=1,2,3,\cdots )\),则称\(\{{{b}_{n}}\}\)\(\{{{a}_{n}}\}\)的“收缩数列”\(.\) 其中,\(\max \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}\)\(\min \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}\)分别表示\({{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\)中的最大数和最小数.已知\(\{{{a}_{n}}\}\)为无穷数列,其前\(n\)项和为\({{S}_{n}}\),数列\(\{{{b}_{n}}\}\)\(\{{{a}_{n}}\}\)的“收缩数列”.

              \((\)Ⅰ\()\)若\({{a}_{n}}=2n+1\),求\(\{{{b}_{n}}\}\)的前\(n\)项和;
              \((\)Ⅱ\()\)证明:\(\{{{b}_{n}}\}\)的“收缩数列”仍是\(\{{{b}_{n}}\}\);

              \((\)Ⅲ\()\)若\({{S}_{1}}+{{S}_{2}}+\cdots +{{S}_{n}}=\dfrac{n(n+1)}{2}{{a}_{1}}+\dfrac{n(n-1)}{2}{{b}_{n}}(n=1,2,3,\cdots )\),求所有满足该条件的\(\{{{a}_{n}}\}\).

            • 7.

              已知等差数列\(\{a_{n}\}\)中,\(a_{1}=-60\),\(a_{17}=-12\).

              \((1)\)该数列第几项起为正?

              \((2)\)前多少项和最小?求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)的最小值

            • 8.

              已知等差数列\(\{a_{n}\}\)中,前\(n\)项和为\(S_{n}\),\(a_{1}=1\),\(\{b_{n}\}\)为等比数列且各项均为正数,\(b_{1}=1\),且满足:\(b_{2}+S_{2}=7\),\(b_{3}+S_{3}=22\).

              \((\)Ⅰ\()\)求\(a_{n}\)与\(b_{n}\);

              \((\)Ⅱ\()\)记\({{c}_{n}}=\dfrac{{{2}^{n-1}}\cdot {{a}_{n}}}{{{b}_{n}}}\),求\(\{c_{n}\}\)的前\(n\)项和\(T_{n}\);

              \((\)Ⅲ\()\)若不等式\({{\left( -{1} \right)}^{n}}\cdot m-{{T}_{n}} < \dfrac{n}{{{2}^{n-1}}}\)对一切\(n∈N*\)恒成立,求实数\(m\)的取值范围.

            • 9.

              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=2n^{2}-3\),求:

              \((1)\)第二项\(a_{2}\);

              \((2)\)通项公式\(a_{n}\).

            • 10.

              已知等差数列\(\{a_{n}\}\)的首项为\(a\),公差为\(b\);等比数列\(\{b_{n}\}\)的首项为\(b\),公比为\(a\),其中\(a\),\(b\)均为正整数,且\(a_{1} < b_{1} < a_{2} < b_{2} < a_{3}\).

              \((I)\)求\(a\)的值;

              \((\)Ⅱ\()\)若对于\(\{a_{n}\}\),\(\{b_{n}\}\),存在\(m\),\(n∈N^{*}\),满足\(a_{m}+1=b_{n}\),求\(b\)的值;

              \((\)Ⅲ\()\)对于满足\((\)Ⅱ\()\)的数列\(\{a_{n}\}\),\(\{b_{n}\}\),令\({{c}_{n}}=\dfrac{{{a}_{n}}-8}{{{b}_{n}}}\),求数列\(\{c_{n}\}\)的最大项.

            0/40

            进入组卷