优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知等差数列\(\{a_{n}\}\)满足\(a_{1}+a_{2}=10\),\(a_{4}-a_{3}=2\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设等比数列\(\{b_{n}\}\)满足\(b_{2}=a_{3}\),\(b_{3}=a_{7}\),问:\(b_{6}\)与数列\(\{a_{n}\}\)的第几项相等?
            • 2.
              已知等差数列\(\{a_{n}\}\)的首项为\(a\),公差为\(b\),等比数列\(\{b_{n}\}\)的首项为\(b\),公比为\(a\).
              \((\)Ⅰ\()\)若数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=-n^{2}+3n\),求\(a\),\(b\)的值;
              \((\)Ⅱ\()\)若\(a∈N^{+}\),\(b∈N^{+}\),且\(a < b < a_{2} < b_{2} < a_{3}\).
              \((i)\)求\(a\)的值;
              \((ii)\)对于数列\(\{a_{n}\}\)和\(\{b_{n}\}\),满足关系式\(a_{n}+k=b_{n}\),\(k\)为常数,且\(k∈N^{+}\),求\(b\)的最大值.
            • 3.
              已知数列\(\{a_{n}\}\)是公比为\( \dfrac {1}{3}\)的等比数列,且\(a_{2}+6\)是\(a_{1}\)和\(a_{3}\)的等差中项.
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设数列\(\{a_{n}\}\)的前\(n\)项之积为\(T_{n}\),求\(T_{n}\)的最大值.
            • 4.
              数列\(A_{n}\):\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}(n\geqslant 4)\)满足:\(a_{1}=1\),\(a_{n}=m\),\(a_{k+1}-a_{k}=0\)或\(1(k=1,2,…,n-1).\)对任意\(i\),\(j\),都存在\(s\),\(t\),使得\(a_{i}+a_{j}=a_{s}+a_{t}\),其中\(i\),\(j\),\(s\),\(t∈\{1,2,…,n\}\)且两两不相等.
              \((\)Ⅰ\()\)若\(m=2\),写出下列三个数列中所有符合题目条件的数列的序号;
              \(①1\),\(1\),\(1\),\(2\),\(2\),\(2\);\(②1\),\(1\),\(1\),\(1\),\(2\),\(2\),\(2\),\(2\);\(③1\),\(1\),\(1\),\(1\),\(1\),\(2\),\(2\),\(2\),\(2\)
              \((\)Ⅱ\()\)记\(S=a_{1}+a_{2}+…+a_{n}.\)若\(m=3\),证明:\(S\geqslant 20\);
              \((\)Ⅲ\()\)若\(m=2018\),求\(n\)的最小值.
            • 5.
              设同时满足条件:\(①b_{n}+b_{n+2}\geqslant 2b_{n+1}\);\(②b_{n}\leqslant M(n∈N^{*},M\)是常数\()\)的无穷数列\(\{b_{n}\}\)叫“欧拉”数列\(.\)已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\((a-1)S_{n}=a(a_{n}-1)(a\)为常数,且\(a\neq 0\),\(a\neq 1)\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {S_{n}}{a_{n}}+1\),若数列\(\{b_{n}\}\)为等比数列,求\(a\)的值,并证明数列\(\{ \dfrac {1}{b_{n}}\}\)为“欧拉”数列.
            • 6.
              已知\(\{a_{n}\}\)是等比数列,满足\(a_{1}=3\),\(a_{4}=24\),数列\(\{a_{n}+b_{n}\}\)是首项为\(4\),公差为\(1\)的等差数列.
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((2)\)求数列\(\{b_{n}\}\)的前\(n\)项和.
            • 7.
              已知集合\(P=\{a_{1},a_{2},…,a_{n}\}\),其中\(a_{i}∈R(1\leqslant i\leqslant n,n > 2).M(P)\)表示\(a_{i}+a_{j}(1\leqslant i < j\leqslant n)\)中所有不同值的个数.
              \((\)Ⅰ\()\)若集合\(P=\{1,3,5,7,9\}\),求\(M(P)\);
              \((\)Ⅱ\()\)若集合\(P=\{1,4,16,…,4^{n-1}\}\),求证:\(a_{i}+a_{j}\)的值两两不同,并求\(M(P)\);
              \((\)Ⅲ\()\)求\(M(P)\)的最小值\(.(\)用含\(n\)的代数式表示\()\)
            • 8.
              已知各项都为整数的等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),若\(S_{5}=35\),且\(a_{2}\),\(a_{3}+1\),\(a_{6}\)成等比数列.
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {a_{n}}{3^{n}}\),且数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < \dfrac {5}{4}\).
            • 9.
              已知\(\{a_{n}\}\)是等比数列,满足\(a_{1}=2\),且\(a_{2}\),\(a_{3}+2\),\(a_{4}\)成等差数列.
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}=2na_{n}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),\(g(n)= \dfrac {2n^{2}-9n+7}{S_{n}-4}(n\geqslant 2,n∈N^{*})\),求正整数\(k\)的值,使得对任意\(n\geqslant 2\)均有\(g(k)\geqslant g(n)\).
            • 10.
              已知数列\(A\):\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}(n\geqslant 2)\)满足\(a_{i}∈N^{*}\)且\(1\leqslant a_{i}\leqslant i(i=1,2,…,n)\),数列\(B\):\(b_{1}\),\(b_{2}\),\(…\),\(b_{n}(n\geqslant 2)\)满足\(b_{i}=τ(a_{i})+1(i=1,2,…,n)\),其中\(τ(a_{1})=0\),\(τ(a_{i})(i=1,2,…,n)\)表示\(a_{1}\),\(a_{2}\),\(…\),\(a_{i-1}\)中与\(a_{i}\)不相等的项的个数.
              \((\)Ⅰ\()\)数列\(A\):\(1\),\(1\),\(2\),\(3\),\(4\),请直接写出数列\(B\);
              \((\)Ⅱ\()\)证明:\(b_{i}\geqslant a_{i}(i=1,2,…,n)\)
              \((\)Ⅲ\()\)若数列\(A\)相邻两项均不相等,且\(B\)与\(A\)为同一个数列,证明:\(a_{i}=i(i=1,2,…,n)\).
            0/40

            进入组卷