优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 已知数列{an}满足:a1=1,点(an,an+1)(n∈N*)在直线y=2x+1上.
              (Ⅰ)求a2,a3,a4的值,并猜想数列{an}的通项公式;
              (Ⅱ)用数学归纳法证明(Ⅰ)中你的猜想.
            • 2. 已知数列{an}满足a1=,an+1=-2an2+2an,n∈N*.
              (1)用数学归纳法证明:an∈(0,);
              (2)令bn=-an,证明:≥3n+1-3.
            • 3.
              在含有\(n\)个元素的集合\(A_{n}=\{1,2,…,n\}\)中,若这\(n\)个元素的一个排列\((a_{1},a_{2},…,a_{n})\)满足\(a_{i}\neq i(i=1,2,…,n)\),则称这个排列为集合\(A_{n}\)的一个错位排列\((\)例如:对于集合\(A_{3}=\{1,2,3\}\),排列\((2,3,1)\)是\(A_{3}\)的一个错位排列;排列\((1,3,2)\)不是\(A_{3}\)的一个错位排列\().\)记集合\(A_{n}\)的所有错位排列的个数为\(D_{n}\).
              \((1)\)直接写出\(D_{1}\),\(D_{2}\),\(D_{3}\),\(D_{4}\)的值;
              \((2)\)当\(n\geqslant 3\)时,试用\(D_{n-2}\),\(D_{n-1}\)表示\(D_{n}\),并说明理由;
              \((3)\)试用数学归纳法证明:\(D_{2n}(n∈N^{*})\)为奇数.
            • 4.
              \((1)\)用数学归纳法证明:当\(n∈N^{*}\)时,\(\cos x+\cos 2x+\cos 3x+…+\cos nx= \dfrac {\sin (n+ \dfrac {1}{2})x}{2\sin \dfrac {1}{2}x}- \dfrac {1}{2}(x∈R\),且\(x\neq 2kπ\),\(k∈Z)\);
              \((2)\)求\(\sin \dfrac {π}{6}+2\sin \dfrac {2π}{6}+3\sin \dfrac {3π}{6}+4\sin \dfrac {4π}{6}+…+2018\sin \dfrac {2018π}{6}\)的值.
            • 5.
              \((1)\)已知\(a_{i} > 0,b_{i} > 0(i∈N^{*})\),比较\( \dfrac { b_{ 1 }^{ 2 }}{a_{1}}+ \dfrac { b_{ 2 }^{ 2 }}{a_{2}}\)与\( \dfrac {(b_{1}+b_{2})^{2}}{a_{1}+a_{2}}\)的大小,试将其推广至一般性结论并证明;
              \((2)\)求证:\( \dfrac {1}{ C_{ n }^{ 0 }}+ \dfrac {3}{ C_{ n }^{ 1 }}+ \dfrac {5}{ C_{ n }^{ 2 }}+…+ \dfrac {2n+1}{ C_{ n }^{ n }}\geqslant \dfrac {(n+1)^{3}}{2^{n}}(n∈N^{*})\).
            • 6.
              已知\(n\)为正偶数,用数学归纳法证明\(1- \dfrac {1}{2}+ \dfrac {1}{3}- \dfrac {1}{4}+…+ \dfrac {1}{n+1}=2( \dfrac {1}{n+2}+ \dfrac {1}{n+4}+…+ \dfrac {1}{2n})\)时,若已假设\(n=k(k\geqslant 2)\)为偶数\()\)时命题为真,则还需要用归纳假设再证\(n=(\)  \()\)时等式成立.
              A.\(n=k+1\)
              B.\(n=k+2\)
              C.\(n=2k+2\)
              D.\(n=2(k+2)\)
            • 7.
              三个数列\(\{a_{n}\}\),\(\{b_{n}\}\),\(\{c_{n}\}\),满足\(a_{1}=- \dfrac {11}{10}\),\(b_{1}=1\),\(a_{n+1}= \dfrac {|a_{n}-1|+ \sqrt { a_{ n }^{ 2 }-2a_{n}+5}}{2}\),\(b_{n+1}=2b_{n}+1\),\(c_{n}=a\;_{b_{n}}\),\(n∈N*\).
              \((\)Ⅰ\()\)证明:当\(n\geqslant 2\)时,\(a_{n} > 1\);
              \((\)Ⅱ\()\)是否存在集合\([a,b]\),使得\(c_{n}∈[a,b]\)对任意\(n∈N*\)成立,若存在,求出\(b-a\)的最小值;若不存在,请说明理由;
              \((\)Ⅲ\()\)求证:\( \dfrac {2^{2}}{c_{2}}+ \dfrac {2^{3}}{c_{3}}+…+ \dfrac {2^{n}}{c_{n}}\leqslant 2^{n+1}+c_{n+1}-6(n∈N*,n\geqslant 2)\).
            0/40

            进入组卷