优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              在正项数列\(\{a_{n}\}\)中,已知\(1\leqslant a_{1}\leqslant 11\),\(a_{n+1}^{2}=133-12a_{n}\),\(n∈N^{*}\).
              \((\)Ⅰ\()\)求证:\(1\leqslant a_{n}\leqslant 11\);
              \((\)Ⅱ\()\)设\(b_{n}=n(a_{2n-1}+a_{2n})\),\(S_{n}\)表示数列\(\{b_{n}\}\)前\(n\)项和,求证:\(S_{n}\geqslant 6n(n+1)\);
              \((\)Ⅲ\()\)若\(a_{1}=8\),设\(c_{n}=a_{2n-1}-a_{2n}\),\(T_{n}\)表示数列\(\{c_{n}\}\)前\(n\)项和.
              \((i)\)比较\(a_{n}\)与\(7\)的大小;
              \((ii)\)求证:\(T_{n} < 13\).
            • 2.
              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,\(a_{1}=3\),且\(2S_{n}=a_{n+1}-3(n∈N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)对于正整数\(i\),\(j\),\(k(i < j < k)\),已知\(λa_{j}\),\(6a_{i}\),\(μa_{k}\)成等差数列,求正整数\(λ\),\(μ\)的值;
              \((3)\)设数列\(\{b_{n}\}\)前\(n\)项和是\(T_{n}\),且满足:对任意的正整数\(n\),都有等式\(a_{1}b_{n}+a_{2}b_{n-1}+a_{3}b_{n-2}+…+a_{n}b_{1}=3^{n+1}-3n-3\)成立\(.\)求满足等式\( \dfrac {T_{n}}{a_{n}}= \dfrac {1}{3}\)的所有正整数\(n\).
            • 3.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}= \dfrac {n^{2}+n}{2}\),等比数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),若\(b_{1}=a_{1}+1\),\(b_{2}-a_{2}=2\).
              \((1)\)求数列\(\{a_{n}\}\)、\(\{b_{n}\}\)的通项公式;
              \((2)\)求满足\(T_{n}+a_{n} > 300\)的最小的\(n\)值.
            • 4.
              若正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),首项\(a_{1}=1\),\(P( \sqrt {S_{n}},S_{n+1})\)点在曲线\(y=(x+1)^{2}\)上\(.\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式\(a_{n}\);
              \((2)\)设\(b_{n}= \dfrac {1}{a_{n}\cdot a_{n+1}}\),\(T_{n}\)表示数列\(\{b_{n}\}\)的前\(n\)项和,若\(T_{n}\geqslant a\)恒成立,求\(T_{n}\)及实数\(a\)的取值范围.
            • 5.
              设\(\{a_{n}\}\)是等差数列,且\(a_{1}=\ln 2\),\(a_{2}+a_{3}=5\ln 2\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)求\(e\;^{a_{1}}+e\;^{a_{2}}+…+e\;^{a_{n}}\).
            • 6.
              设\(M⊆N^{+}\),正项数列\(\{a_{n}\}\)的前\(n\)项的积为\(T_{n}\),且\(∀k∈M\),当\(n > k\)时,\( \sqrt {T_{n+k}T_{n-k}}=T_{n}T_{k}\)都成立.
              \((1)\)若\(M=\{1\}\),\(a_{1}= \sqrt {3}\),\(a_{2}=3 \sqrt {3}\),求数列\(\{a_{n}\}\)的前\(n\)项和;
              \((2)\)若\(M=\{3,4\}\),\(a_{1}= \sqrt {2}\),求数列\(\{a_{n}\}\)的通项公式.
            • 7.
              已知数列\(\{a_{n}\}\)满足\(a_{n+1}+(-1)^{n}a_{n}= \dfrac {n+5}{2}(n∈N^{*})\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\).
              \((1)\)求\(a_{1}+a_{3}\)的值;
              \((2)\)若\(a_{1}+a_{5}=2a_{3}\).
              \(①\)求证:数列\(\{a_{2n}\}\)为等差数列;
              \(②\)求满足\(S_{2p}=4S_{2m}(p,m∈N^{*})\)的所有数对\((p,m)\).
            • 8.
              已知等差数列\(\{a_{n}\}\)满足:\(a_{2}=5\),\(a_{4}+a_{6}=22\),\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\)
              \((1)\)求\(a_{n}\)及\(S_{n}\);
              \((2)\)令\(b_{n}= \dfrac {1}{a_{n}^{2}-1}(n∈N^{*})\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=k(3^{n}-1)\),且\(a_{3}=27\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若\(b_{n}=\log _{3}a_{n}\),求数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和\(T_{n}\).
            • 10.
              已知数列\(\{a_{n}\}\)是公比为\(2\)的等比数列,且\(a_{2}\),\(a_{3}+1\),\(a_{4}\)成等差数列.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)记\(b_{n}= \dfrac {1}{\log _{2}a_{n+1}\cdot \log _{2}a_{n+2}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            0/40

            进入组卷