优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              在直角坐标系\(xOy\)中,点\(A(-2,2).\)以坐标原点为极点,\(x\)轴正半轴为极轴建立极坐标系,点\(A\)的极坐标为\((\)  \()\)
              A.\((2 \sqrt {2}, \dfrac {π}{4})\)
              B.\((2 \sqrt {2}, \dfrac {3π}{4})\)
              C.\(( \sqrt {2}, \dfrac {π}{4})\)
              D.\(( \sqrt {2}, \dfrac {3π}{4})\)
            • 2.
              已知曲线\(C\)的极坐标方程是\(ρ-4\sin θ=0.\)以极点为原点,极轴为\(x\)轴的正半轴,建立平面直角坐标系,直线\(l\)过点\(M(1,0)\),倾斜角为\( \dfrac {3π}{4}\).
              \((1)\)求曲线\(C\)的直角坐标方程与直线\(l\)的参数方程;
              \((2)\)设直线\(l\)与曲线\(C\)交于\(A\)、\(B\)两点,求\(|MA|+|MB|\).
            • 3.
              在直角坐标系\(xOy\)的原点,以坐标原点为极点,\(x\)轴非负半轴为极轴建立极坐标系,已知曲线\(C_{1}\)的极坐标方程为\(ρ= \dfrac {2\cos θ}{\sin ^{2}\theta }\),\(C_{2}\)的参数方程为\( \begin{cases} x=2- \dfrac { \sqrt {2}}{2}t \\ y=2+ \dfrac { \sqrt {2}}{2}t\end{cases}(t\)为参数\()\).
              \((\)Ⅰ\()\)将曲线\(C_{1}\)与\(C_{2}\)的方程化为直角坐标系下的普通方程;
              \((\)Ⅱ\()\)若\(C_{1}\)与\(C_{2}\)相交于\(A\)、\(B\)两点,求\(|AB|\).
            • 4.
              在极坐标系中,曲线\(C_{1}\)的极坐标方程为\(ρ(\cos θ+\sin θ)=4\),现以极点\(O\)为原点,极轴为\(x\)轴的非负半轴建立平面直角坐标系,曲线\(C_{2}\)的参数方程为\( \begin{cases} \overset{x=2+3\cos \theta }{y=1+3\sin \theta }\end{cases}(θ\)为参数\()\).
              \((1)\)求曲线\(C_{1}\)的直角坐标方程和曲线\(C_{2}\)的普通方程;
              \((2)\)若曲线\(C_{1}\)与曲线\(C_{2}\)交于\(A\)、\(B\)两点,\(P\)为曲线\(C_{2}\)上的动点,求\(\triangle PAB\)面积的最大值.
            • 5.
              已知极点为直角坐标系的原点,极轴为\(x\)轴正半轴且单位长度相同的极坐标系中曲线\(C_{1}\):\(ρ=1\),\(C_{2}: \begin{cases} x= \dfrac { \sqrt {2}}{2}t-1 \\ y= \dfrac { \sqrt {2}}{2}t+1\end{cases}(t\)为参数\()\).
              \((\)Ⅰ\()\)求曲线\(C_{1}\)上的点到曲线\(C_{2}\)距离的最小值;
              \((\)Ⅱ\()\)若把\(C_{1}\)上各点的横坐标都扩大为原来的\(2\)倍,纵坐标扩大为原来的\( \sqrt {3}\)倍,得到曲线\(C_{1}^{′}.\)设\(P(-1,1)\),曲线\(C_{2}\)与\(C_{1}^{′}\)交于\(A\),\(B\)两点,求\(|PA|+|PB|\).
            • 6.
              在直角坐标系\(xOy\)中,曲线\(C\)的参数方程为\( \begin{cases} \overset{x=2t^{2}-1}{y=2t-1}\end{cases}(t\)为参数\().\)以直角坐标系的原点为极点,\(x\)轴的正半轴为极轴建立极坐标系,已知直线\(l\)的极坐标方程为\(ρ(2\sin θ-\cos θ)=m\).
              \((1)\)求曲线\(C\)的普通方程;
              \((2)\)若\(l\)与曲线\(C\)相切,且\(l\)与坐标轴交于\(A\),\(B\)两点,求以\(AB\)为直径的圆的直角坐标方程.
            • 7.
              选修\(4-4\);坐标系与参数方程
              已知曲线\(C_{1}\)的参数方程是\( \begin{cases} \overset{x=2\cos \phi }{y=3\sin \phi }\end{cases}(φ\)为参数\()\),以坐标原点为极点,\(x\)轴的正半轴为极轴建立坐标系,曲线\(C_{2}\)的坐标系方程是\(ρ=2\),正方形\(ABCD\)的顶点都在\(C_{2}\)上,且\(A\),\(B\),\(C\),\(D\)依逆时针次序排列,点\(A\)的极坐标为\((2, \dfrac {π}{3}).\)
              \((1)\)求点\(A\),\(B\),\(C\),\(D\)的直角坐标;
              \((2)\)设\(P\)为\(C_{1}\)上任意一点,求\(|PA|^{2}+|PB|^{2}+|PC|^{2}+|PD|^{2}\)的取值范围.
            • 8.
              已知在极坐标系中曲线\(C_{1}\)的极坐标方程为:\(ρ=4\cos θ\),以极点为坐标原点,以极轴为\(x\)轴的正半轴建立直角坐标系,曲线\(C_{2}\)的参数方程为:\( \begin{cases} x=3- \dfrac {1}{2}t \\ y= \dfrac { \sqrt {3}}{2}t\end{cases}(t\)为参数\()\),点\(A(3,0)\).
              \((1)\)求出曲线\(C_{1}\)的直角坐标方程和曲线\(C_{2}\)的普通方程;
              \((2)\)设曲线\(C_{1}\)与曲线\(C_{2}\)相交于\(P\),\(Q\)两点,求\(|AP|⋅|AQ|\)的值.
            • 9.
              在平面直角坐标系\(xOy\)中,曲线\(C\)的参数方程为\( \begin{cases} x= \sqrt {3}\cos θ \\ y=\sin θ\end{cases}\)以\(O\)为极点,\(x\)轴的非负半轴为极轴建立极坐标系,直线\(l\)的极坐标方程为\(θ= \dfrac {π}{3}(ρ∈R)\).
              \((1)\)写出曲线\(C\)的普通方程及直线\(l\)的直角坐标方程;
              \((2)\)过点\(M\)且平行于直线\(l\)的直线与曲线\(C\)交于\(A\),\(B\)两点,若\(|MA|⋅|MB|=2\),证明点\(M\)在一个椭圆上.
            • 10.
              在直角坐标系\(xOy\)中,曲线\(C_{1}\):\( \begin{cases} \overset{x=t\cos \alpha }{y=t\sin \alpha }\end{cases}(t\)为参数,\(t\neq 0)\),其中\(0\leqslant α\leqslant π\),在以\(O\)为极点,\(x\)轴正半轴为极轴的极坐标系中,曲线\(C_{2}\):\(ρ=2\sin θ\),\(C_{3}\):\(ρ=2 \sqrt {3}\cos θ\).
              \((1)\)求\(C_{2}\)与\(C_{3}\)交点的直角坐标;
              \((2)\)若\(C_{1}\)与\(C_{2}\)相交于点\(A\),\(C_{1}\)与\(C_{3}\)相交于点\(B\),求\(|AB|\)的最大值.
            0/40

            进入组卷