优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,侧面\(BB_{1}C_{1}C\)是菱形,其对角线的交点为\(O\),且\(AB=AC_{1}\),\(AB⊥B_{1}\)C.
              \((1)\)求证:\(AO⊥\)平面\(BB_{1}C_{1}C\);
              \((2)\)设\(∠B_{1}BC=60^{\circ}\),若直线\(A_{1}B_{1}\)与平面\(BB_{1}C_{1}C\)所成的角为\(45^{\circ}\),求二面角\(A_{1}-B_{1}C-A\)的大小.
            • 2.
              如图,在四棱锥\(P-ABCD\)中,四边形\(ABCD\)是直角梯形,\(AB⊥AD\),\(AB/\!/CD\),
              \(PC⊥\)底面\(ABCD\),\(AB=2AD=2CD=4\),\(PC=2a\),\(E\)是\(PB\)的中点.
              \((\)Ⅰ\()\)求证:平面\(EAC⊥\)平面\(PBC\);
              \((\)Ⅱ\()\)若二面角\(P-AC-E\)的余弦值为\( \dfrac { \sqrt {6}}{3}\),求直线\(PA\)与平面\(EAC\)所成角的正弦值.
            • 3.
              在如图所示的多面体中,\(EA⊥\)平面\(ABC\),\(DB⊥\)平面\(ABC\),\(AC⊥BC\),且\(AC=BC=BD=2AE=2\),\(M\)是\(AB\)的中点.
              \((\)Ⅰ\()\)求证:\(CM⊥EM\);
              \((\)Ⅱ\()\)求平面\(EMC\)与平面\(BCD\)所成的锐二面角的余弦值;
              \((\)Ⅲ\()\)在棱\(DC\)上是否存在一点\(N\),使得直线\(MN\)与平面\(EMC\)所成的角为\(60^{\circ}.\)若存在,指出点\(N\)的位置;若不存在,请说明理由.
            • 4.

              如图,三棱柱\(ABC-{{A}_{1}}{{B}_{1}}{{C}_{1}}\)中,\(AB\bot \)平面\(A{{A}_{1}}{{C}_{1}}C\)\(A{{A}_{1}}=AB=AC=2\)\(\angle {{A}_{1}}AC={{60}^{{}^\circ }}\)\(A{{A}_{1}}\)的平面交\({{B}_{1}}{{C}_{1}}\)于点\(E\),交\(BC\)于点\(F\)



              \((\)Ⅰ\()\)求证:\({{A}_{1}}C\bot \)平面\(AB{{C}_{1}}\);

              \((\)Ⅱ\()\)求证:四边形\(A{{A}_{1}}EF\)为平行四边形;

              \((\)Ⅲ\()\)若\(\dfrac{BF}{BC}=\dfrac{2}{3}\),求二面角\(B-A{{C}_{1}}-F\)的大小.

            • 5.

              如图,在四棱锥\(S-ABCD \)中,己如\(AB/\!/DC \),\(AB⊥AD \),\(∆SAD \)是正三角形,\(AD=AB=2DC=2,SC= \sqrt{5},E \)为\(AD\)的中点.


              \((\)Ⅰ\()\)若\(F\)为\(SB\)的中点,求证:\(CF/\!/ \)平面\(SAD\):
              \((\)Ⅱ\()\)求\(AD\)与平面\(SBC\)所成角的余弦值:
              \((\)Ⅲ\()\)求点\(E\)到平面\(SBC\)的距离.
            • 6.

              如图,已知四棱锥\(S-ABCD\)中,\(SA⊥\)平面\(ABCD\),\(∠ABC=∠BCD=90^{\circ}\),\(SA=AB=BC=2CD=2\),\(E\)是边\(SB\)的中点.



              \((1)\)求证:\(CE/\!/\)平面\(SAD\);

              \((2)\)求二面角\(E-CD-B\)的余弦值大小.

            • 7.

              如图,在四棱锥\(P-ABCD\)中,\(AD/\!/BC\)\(\angle BAD={{90}^{{}^\circ }}\)\(PA=PD\)\(AB\bot PA\)\(AD=2\)\(AB=BC=1\)




              \((\)Ⅰ\()\)求证:平面\(PAD\bot \) 平面\(ABCD\)
              \((\)Ⅱ\()\)若\(E\) \(PD\) 的中点,求证:\(CE/\!/\) 平面\(PAB\)

              \((\)Ⅲ\()\)若\(DC\)与平面\(PAB\)所成的角为\({{30}^{{}^\circ }}\),求四棱锥\(P-ABCD\)的体积.

            • 8.

              如图\(1\),在梯形\(ABCD\)中,\(AB/\!/CD\)\(\angle ABC={{90}^{\circ }}\)\(AB=2CD=2BC=4\)\(O\)是边\(AB\)的中点\(.\) 将三角形\(AOD\)绕边\(OD\)所在直线旋转到\({{A}_{1}}OD\)位置,使得\(\angle {{A}_{1}}OB={{120}^{\circ }}\),如图\(2.\) 设\(m\)为平面\({{A}_{1}}DC\)与平面\({{A}_{1}}OB\)的交线.



              \((\)Ⅰ\()\)判断直线\(DC\)与直线\(m\)的位置关系并证明;

              \((\)Ⅱ\()\)若直线\(m\)上的点\(G\)满足\(OG\bot {{A}_{1}}D\),求出\({{A}_{1}}G\)的长;

              \((\)Ⅲ\()\)求直线\({{A}_{1}}O\)与平面\({{A}_{1}}BD\)所成角的正弦值.\(\dfrac{\sqrt{5}}{5}\)

            • 9.
              如图,在正四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,已知\(AB=2\),\(AA_{1}=5\),
              E、\(F\)分别为\(D_{1}\)D、\(B_{1}B\)上的点,且\(DE=B_{1}F=1\).
              \((\)Ⅰ\()\)求证:\(BE⊥\)平面\(ACF\);
              \((\)Ⅱ\()\)求点\(E\)到平面\(ACF\)的距离.
            • 10. 如图几何体\(E-ABCD\)是四棱锥,\(\triangle ABD\)为正三角形,\(∠BCD=120^{\circ}\),\(CB=CD=CE=1\),\(AB=AD=AE= \sqrt {3}\),且\(EC⊥BD\).
              \((1)\)求证:平面\(BED⊥\)平面\(AEC\);
              \((2)M\)是棱\(AE\)的中点,求证:\(DM/\!/\)平面\(EBC\);
              \((3)\)求二面角\(D-BM-C\)的平面角的余弦值.
            0/40

            进入组卷