优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              在直角坐标\(xOy\)中,已知点\(P(0,\sqrt{3})\),曲线\(C\)的参数方程为\(\begin{cases}x= \sqrt{2}\cos φ \\ u=2\sin φ\end{cases} (\phi \)为参数\().\)以原点为极点,\(x\)轴正半轴为极轴建立极坐标系,直线\(l\)的极坐标方程为\(ρ=\dfrac{\sqrt{3}}{2\cos \left( \theta -\dfrac{\pi }{6} \right)}\).

              \((1)\)判断点\(P\)与直线\(l\)的位置关系并说明理由;

              \((2)\)设直线\(l\)与曲线\(C\)的两个交点分别为\(A\),\(B\),求\(\dfrac{1}{\left| PA \right|}+\dfrac{1}{\left| PB \right|}\)的值.

            • 2. 在直角坐标系\(xOy\)中,曲线\(C_{1}\)的参数方程为\(\begin{cases} x=2+2\cos t \\ y=2\sin t \end{cases}(t\)为参数\().\)在以坐标原点\(O\)为极点,\(x\)轴正半轴为极轴的极坐标系中,曲线\(C_{2}\):\(ρ=2\sin θ\),曲线\(C\):\(θ= \dfrac{π}{6}(ρ > 0)\),\(A(2,0)\).
              \((1)\)把\(C\)\({\,\!}_{1}\)的参数方程化为极坐标方程;

              \((2)\)设\(C\)\({\,\!}_{3}\)分别交\(C\)\({\,\!}_{1}\),\(C\)\({\,\!}_{2}\)于点\(P\),\(Q\),求\(\triangle APQ\)的面积.

            • 3.

              在平面直角坐标系\(xOy\)中,以坐标原点\(O\)为极点,\(x\)轴正半轴为极轴建立极坐标系,曲线\(C_{1}\)的参数方程为\(\begin{cases}x=2+\cos θ \\ y=\sin θ\end{cases} (\theta \)为参数\()\).

              \((1)\)求曲线\(C_{1}\)的直角坐标方程\(;\)

              \((2)\)曲线\(C_{2}\)的极坐标方程为\(θ= \dfrac{π}{6}\left(p∈R\right) \),求\(C_{1}\)与\(C_{2}\)的交点的极坐标.

            • 4.

              已知曲线\(C_{1}\):\(\begin{cases} x=-4+\cos t, \\ y=3+\sin t \end{cases}(t\)是参数\()\),\(C\):\(\begin{cases} x=8\cos θ, \\ y=3\sin θ \end{cases}(θ\)是参数\()\).

              \((1)\)化\(C_{1}\),\(C_{2}\)的方程为普通方程,并说明它们分别表示什么曲线;

              \((2)\)若\(C_{1}\)上的点\(P\)对应的参数为\(t= \dfrac{π}{2}\),\(Q\)为\(C_{2}\)上的动点,求\(PQ\)中点\(M\)到直线\(C_{3}\):\(\begin{cases} x=3+2t, \\ y=-2+t \end{cases}(t\)是参数\()\)距离的最小值

            • 5.
              在直角坐标系\(xOy\)中,曲线\(C_{1}\)的参数方程为\( \begin{cases} \overset{x=2+2\cos \alpha }{y=2\sin \alpha }\end{cases}\),参数\(α∈(0,π)\),\(M\)为\(C_{1}\)上的动点,满足条件\( \overrightarrow{OM}=2 \overrightarrow{OP}\)的点\(P\)的轨迹为曲线\(C_{2}\).
              \((\)Ⅰ\()\)求\(C_{2}\)的普通方程;
              \((\)Ⅱ\()\)在以\(O\)为极点,\(x\)轴的非负半轴为极轴的极坐标系中,射线\(θ= \dfrac {π}{3}\)与\(C_{1}\),\(C_{2}\)分别交于\(A\),\(B\)两点,求\(|AB|\).
            • 6.
              直线\( \begin{cases} \overset{x=t\cos \alpha }{y=t\sin \alpha }\end{cases}(t\)为参数\()\)与圆\( \begin{cases} \overset{x=4+2\cos \phi }{y=2\sin \phi }\end{cases}(φ\)为参数\()\)相切,则此直线的倾斜角\(α(α > \dfrac {π}{2})\)等于\((\)  \()\)
              A.\( \dfrac {5π}{6}\)
              B.\( \dfrac {3π}{4}\)
              C.\( \dfrac {2π}{3}\)
              D.\( \dfrac {π}{6}\)
            • 7.

              以平面直角坐标系的原点为极点,以\(x\)轴的正半轴为极轴,建立极坐标系,则曲线\(\begin{cases}x= \sqrt{7}\cos φ \\ y= \sqrt{7}\sin ϕ\end{cases} (φ \)为参数\()\)上的点到曲线\(ρ\cos θ+ρ\sin θ=4 \)的最短距离是

              A.\(2 \sqrt{2}- \sqrt{7} \)
              B.\(0\)
              C.\(1\)
              D.\(2 \sqrt{2} \)
            • 8. 已知曲线\(C_{1}\)的参数方程为\(\{_{y=4+5\sin t}^{x=5+5\cos t}(t\)为参数\().\)以坐标原点为极点,\(x\)轴的正半轴为极轴建立极坐标系,曲线\({{C}_{2}}\)的极坐标方程为\(\rho =2\cos \theta \).
              \((1)\)把\({{C}_{1}}\)的参数方程化为极坐标方程;
              \((2)\)求\({{C}_{1}}\)与\({{C}_{2}}\)交点的极坐标\((\rho \geqslant 0,0\leqslant \theta < 2\pi ).\)
            • 9.

              曲线\(C\)的参数方程为\(\begin{cases}x=\sin α-\cos α \\ y=\sin 2α\end{cases} (α\)为参数\()\),则它的普通方程为(    )

              A.\(y\)\(=\) \(x\)\({\,\!}^{2}+1\)                            
              B.\(y\)\(=-\) \(x\)\({\,\!}^{2}+1\)   
              C.\(y=-x^{2}+1\) ,\(x∈[- \sqrt{2} , \sqrt{2} ]\)  
              D.\(y\)\(=\) \(x\)\({\,\!}^{2}+1\), \(x\)\(∈[- \sqrt{2} , \sqrt{2} ]\)
            • 10.

              已知曲线\(a > 0,b > 0,\),曲线\(C\)上任意一点\(P\)作与\(l\)夹角为\(30^{\circ}\)的直线,交\(l\)于点\(A\),则\(\left| PA \right|\)的最大值是\((\)  \()\)

              A.\(5\sqrt{5}\)
              B.\(\dfrac{24\sqrt{5}}{5}\)
              C.\(\dfrac{23\sqrt{5}}{5}\)
              D.\(\dfrac{22\sqrt{5}}{5}\) 
            0/40

            进入组卷