优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              设正项数列\(\left\{{a}_{n}\right\} \)的前\(n\)项和为\({S}_{n} \),且满足\({S}_{n}= \dfrac{1}{2}{{a}_{n}}^{2}+ \dfrac{n}{2}\left(n∈N*\right) \).

              \((1)\)计算\({a}_{1}\;,\;{a}_{2\;},\;{a}_{3} \)的值,并猜想\(\left\{{a}_{n}\right\} \)的通项公式;

              \((2)\)用数学归纳法证明\(\left\{{a}_{n}\right\} \)的通项公式.

            • 2.

              当\(n\in {{N}^{*}}\)时,\({{S}_{n}}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\cdot \cdot \cdot +\dfrac{1}{2n-1}-\dfrac{1}{2n}\),\({{T}_{n}}=\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+\cdot \cdot \cdot +\dfrac{1}{2n}\),

              \((\)Ⅰ\()\)求\({{S}_{1}},{{S}_{2}},{{T}_{1}},{{T}_{2}}\);

              \((\)Ⅱ\()\)猜想\({{S}_{n}}\)与\({{T}_{n}}\)的关系,并用数学归纳法证明.

            • 3.

              当\(n∈N^{*}\)时,\({{S}_{n}}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\cdots +\dfrac{1}{2n-1}\dfrac{1}{2n}{{T}_{n}}=\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+\cdots +\dfrac{1}{2n}\)

              \((1)\)求\(S_{1}\),\(S_{2}\),\(T_{1}\),\(T_{2}\).

              \((2)\)猜想\(S_{n}\)与\(T_{n}\)的关系,并用数学归纳法证明

            • 4.

              已知\(n∈N*\),求证:\(1·2^{2}-2·3^{2}+…+(2n-1)·(2n)^{2}-2n·(2n+1)^{2}=-n(n+1)(4n+3)\).

            • 5.

              已知\(f(n)=1^{2}+2^{2}+3^{2}+…+(2n)^{2}\),则\(f(k+1)\)与\(f(k)\)的关系是\((\)  \()\)

              A.\(f(k+1)=f(k)+(2k+1)^{2}+(2k+2)^{2}\)

              B.\(f(k+1)=f(k)+(k+1)^{2}\)

              C.\(f(k+1)=f(k)+(2k+2)^{2}\)

              D.\(f(k+1)=f(k)+(2k+1)^{2}\)
            • 6.

              函数\(f_{1}(x)=\dfrac{1}{x}\),\(f_{2}(x)=\dfrac{1}{x+{{f}_{1}}(x)}\),\(…\),\(f_{n+1}(x)=\dfrac{1}{x+{{f}_{n}}(x)}\),\(…\),则函数\(f_{2018}(x)\)是\((\)  \()\)

              A.奇函数但不是偶函数                    
              B.偶函数但不是奇函数

              C.既是奇函数又是偶函数                  
              D.既不是奇函数又不是偶函数
            • 7.

              用数学归纳法证明\(1+ \dfrac{1}{2}+ \dfrac{1}{3}+⋯+ \dfrac{1}{{2}^{n}-1} < n\left(n∈{N}^{*}且n > 1\right) \),第一步即证不等式________________________成立.

            • 8. 利用数学归纳法证明不等式\(1+ \dfrac {1}{2}+ \dfrac {1}{3}+ \dfrac {1}{4}+…+ \dfrac {1}{2^{n-1}+1} < f(n)(n\geqslant 2,n∈N^{*})\)的过程中,由\(n=k\)变到\(n=k+1\)时,左边增加了\((\)  \()\)
              A.\(1\)项
              B.\(k\)项
              C.\(2^{k-1}\)项
              D.\(2^{k}\)项
            • 9.

              用数学归纳法证明\(\dfrac{1}{n+1}+ \dfrac{1}{n+2}+⋯+ \dfrac{1}{3n}\geqslant \dfrac{5}{6} \)时,从\(n=k\)到\(n=k+1\),不等式左边需添加的项是\((\)    \()\)

              A.\(\dfrac{1}{3k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}\)
              B.\(\dfrac{1}{3k+1}+\dfrac{1}{3k+2}-\dfrac{2}{3k+3}\)
              C.\(\dfrac{1}{3k+3}-\dfrac{1}{k+1}\)
              D.\(\dfrac{1}{3k+3}\)
            • 10.
              试用数学归纳法证明\( \dfrac {1}{2^{2}}+ \dfrac {1}{3^{2}}+…+ \dfrac {1}{(n+1)^{2}} > \dfrac {1}{2}- \dfrac {1}{n+2}\).
            0/40

            进入组卷