优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              \((1)\)已知\(\sin α= \dfrac{3}{5}\),\(α∈( \dfrac{π}{2},π)\),则\(\cos \alpha =\)________,\( \dfrac{\cos 2α}{ \sqrt{2}\sin (α+ \dfrac{π}{4})}=\)________.

              \((2)\)已知数列\(\{a_{n}\}\)的首项为\(1\),数列\(\{b_{n}\}\)为等比数列且\(b_{n}= \dfrac{a_{n+1}}{a_{n}}\),若\(b_{10}·b=2\),则\({{b}_{7}}{{b}_{14}}=\)_____,\(a_{21}=\)________.

              \((3)\)计算:\(\tan 20^{\circ}+\tan 40^{\circ}+ \sqrt{3}\tan 20^{\circ}\tan 40^{\circ}=\)________,\( \dfrac{ \sqrt{3}\tan 12^{\circ}-3}{(4\cos ^{2}12^{\circ}-2)\sin 12^{\circ}}=\)________.

              \((4)\)数列\(\left\{ {{a}_{n}} \right\}\)满足\({{a}_{1}}=1\),\(\sqrt{\dfrac{1}{{{a}_{n}}^{2}}+2}=\dfrac{1}{{{a}_{n+1}}}\left( n\in {{N}^{*}} \right)\),记\({{b}_{n}}={{a}_{n}}^{2}\),则数列\(\left\{ {{a}_{n}} \right\}\)的通项公式\({{a}_{n}}=\)____________,数列\(\left\{ {{b}_{n}}{{b}_{n+1}} \right\}\)前\(n\)项和\({{S}_{n}}=\)___________.

              \((5)\)在\(200 m\)高的山顶上,测得山下一塔顶与塔底的俯角分别为\(30^{\circ}\)与\(60^{\circ}\),则塔高是_____\(m\).

              \((6)\)若\(\sin \alpha +\sin \beta =\dfrac{\sqrt{2}}{2},\)则\(\cos \alpha +\cos \beta \)的取值范围_____.

              \((7)\)设数列\({{a}_{n}}\)满足:\({{a}_{1}}=\sqrt{3}\),\({{a}_{n+1}}=\left[ {{a}_{n}} \right]+\dfrac{1}{\left\{ {{a}_{n}} \right\}}\),其中,\(\left[ {{a}_{n}} \right]\)、\(\left\{ a{}_{n} \right\}\)分别表示正数\({{a}_{n}}\)的整数部分、小数部分,则\({{a}_{2018}}=\)_____.

            • 2.

              已知正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),对任意\(n∈N^{*}\),点\(\left( \left. a_{n},S_{n} \right. \right)\)都在函数\(f\left( \left. x \right. \right)= \dfrac{1}{2}x^{2}+ \dfrac{1}{2}x\)的图象上.

              \((1)\)求数列\(\{a_{n}\}\)的首项\(a_{1}\)和通项公式\(a_{n}\);

              \((2)\)若数列\(\left\{ \left. b_{n} \right. \right\}\)满足\(\log _{2}b_{n}=n+\log _{2}\left( \left. 2a_{n}-1 \right. \right)\left( \left. n∈N^{*} \right. \right)\),求数列\(\left\{ \left. b_{n} \right. \right\}\)的前\(n\)项和\(T_{n}\);

              \((3)\)已知数列\(\left\{ \left. c_{n} \right. \right\}\)满足\(c_{n}= \dfrac{4n-6}{T_{n}-6}- \dfrac{1}{a_{n}a_{n+1}}\left( \left. n∈N^{*} \right. \right).\)若对任意\(n∈N^{*}\),存在\(x_{0}∈\left[ \left. - \dfrac{1}{2}, \dfrac{1}{2} \right. \right]\),使得\(c_{1}+c_{2}+…+c_{n}\leqslant f(x)-a\)成立,求实数\(a\)的取值范围.

            • 3.

              已知\(\triangle ABC\)的三个内角\(A\),\(B\),\(C\)成等差数列,角\(B\)所对的边\(b= \sqrt{3}\),且函数\(f(x)=2 \sqrt{3}\sin ^{2}x+2\sin x\cos x- \sqrt{3}\)在\(x=A\)处取得最大值,则\(\triangle ABC\)的面积是________  

            • 4.

              公差不为零的等差数列\(\{a_{n}\}\)中,\(a_{1}\),\(a_{2}\),\(a_{5}\)成等比数列,且该数列的前\(10\)项和为\(100.\)数列\(\{b_{n}\}\)的前\(n\)项和为\({S}_{n} \),且满足\(S_{n}=2b_{n}-1,\;\;n∈N^{*}\).
              \((I)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;

              \((\)Ⅱ\(){C}_{n}={a}_{n}+{\log }_{ \sqrt{2}}{b}_{n}, \)数列\(\left\{{C}_{n}\right\} \)的前\(n \)项和为\({T}_{n} \),若数列\(\left\{{d}_{n}\right\} \)为等差数列,且\({d}_{n}= \dfrac{{T}_{n}}{n-c}\left(其中,c\neq 0\right) \).

              \((i)\)求非零常数\(c ;(ii)\)若\(f(n)=\; \dfrac{{d}_{n}}{(n+36){d}_{(n+1)}}(n∈{N}^{*}), \)求数列\(\left\{f\left(n\right)\right\} \)的最大项的值.

            • 5.

              已知无穷数列\(\left\{{a}_{n}\right\} \)的各项都是正数,其前\(n\)项和为\({S}_{n} \),且满足:\({a}_{1}=a \),\(r{S}_{n}={a}_{n}{a}_{n+1}-1 \),其中\(a\neq 1 \),常数\(r∈N \).

              \((1)\)求证:\({a}_{n+2}-{a}_{n} \)是一个定值;

              \((2)\)若数列\(\left\{{a}_{n}\right\} \)是一个周期数列\((\)存在正整数\(T\),使得对任意\(n∈{N}^{*} \),都有\({a}_{n+T}={a}_{n} \)成立,则称\(\left\{{a}_{n}\right\} \)为周期数列,\(T\)为它的一个周期\()\),求该数列的最小周期;

              \((3)\)若数列\(\left\{{a}_{n}\right\} \)是各项均为有理数的等差数列,\({c}_{n}=2·{3}^{n-1} (n∈{N}^{*} )\),问:数列\({c}_{n} \)中的所有项是否都是数列\(\left\{{a}_{n}\right\} \)中的项?若是,请说明理由;若不是,请举出反例.

            • 6.

              \((1)\)已知\(| \overset{→}{a}|=1,| \overset{→}{b}|=2 \),\(| \overset{→}{a}-2 \overset{→}{b}|= \sqrt{13} \),则\( \overset{→}{a} \)与\( \overset{→}{b} \)的夹角为______.

              \((2)\)已知数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{3}}=2,{{a}_{7}}=1\),且数列\(\left\{ \dfrac{1}{{{a}_{n}}+1} \right\}\)是等差数列,则\({{a}_{11}}=\)       

              \((3)\)已知函数\(f\)\((\)\(x\)\()=\begin{cases}2\sin πx,x < 1 \\ f(x- \dfrac{2}{3}),x\geqslant 1\end{cases} \),则\( \dfrac{f(2)}{f(- \dfrac{1}{6})}= = \)______.

              \((4)\)在数列\(\{\)\(a_{n}\)\(\}\)中,若\(a_{n}\)\({\,\!}^{2}-\)\(a_{n}\)\({\,\!}_{-1}^{2}=\)\(p\)\((\)\(n\)\(\geqslant 2\),\(n\)\(∈N^{×}\),\(p\)为常数\()\),则称\(\{\)\(a_{n}\)\(\}\)为“等方差数列”,下列是对“等方差数列”的判断;

              \(①\)若\(\{\)\(a_{n}\)\(\}\)是等方差数列,则\(\{\)\(a_{n}\)\({\,\!}^{2}\}\)是等差数列;

              \(②\{(-1)\)\({\,\!}^{n}\)\(\}\)是等方差数列;

              \(③\)若\(\{\)\(a_{n}\)\(\}\)是等方差数列,则\(\{\)\(a\) \(\}(\)\(k\)\(∈N_{+}\),\(k\)为常数\()\)也是等方差数列;

              \(④\)若\(\{\)\(a_{n}\)\(\}\)既是等方差数列,又是等差数列,则该数列为常数列.

              其中正确命题序号为______\(.(\)将所有正确的命题序号填在横线上\()\)

            • 7.

              已知数列\(\left\{ {{a}_{n}} \right\}\),\(\left\{ {{b}_{n}} \right\}\)满足\({{a}_{1}}=\dfrac{1}{4},{{a}_{n}}+{{b}_{n}}=1,{{b}_{n+1}}=\dfrac{{{b}_{n}}}{(1-{{a}_{n}})(1+{{a}_{n}})}\).

               \((\)Ⅰ\()\)求\({{b}_{1}},{{b}_{2}},{{b}_{3}},{{b}_{4}}\);

               \((\)Ⅱ\()\)设\({{c}_{n}}=\dfrac{1}{{{b}_{n}}-1}\),证明数列\(\left\{ {{c}_{n}} \right\}\)是等差数列;

               \((\)Ⅲ\()\)设\({{S}_{n}}={{a}_{1}}{{a}_{2}}+{{a}_{2}}{{a}_{3}}+{{a}_{3}}{{a}_{4}}+...+{{a}_{n}}{{a}_{n+1}}\),不等式\(4a{{S}_{n}} < {{b}_{n}}\)恒成立时,求实 数\(a\)的取值范围.

            • 8.

              把满足条件\(T\)的数列\(\{\)\(a_{n}\)\(\}\)构成的集合记为\(M\),其中条件\(T\):任意\(m\)\(n\)\(∈N*\),都有\(a_{n}\)\({\,\!}_{+}\)\({\,\!}_{m}\)\(\geqslant \)\(a_{n}\)\(+\)\(a\)\({\,\!}_{m}\)

               \((1)\)已知等差数列\(\{\)\(a_{n}\)\(\}\)的前\(n\)项的和为\(S_{n}\),且\(a\)\({\,\!}_{2}=3\),\(a\)\({\,\!}_{3}+\)\(a\)\({\,\!}_{5}=10\),求证:\(\{\)\(S_{n}\)\(\}\)\(M\)

               \((2)\)已知数列\(\{\)\(a_{n}\)\(\}\)是各项均为正数的等比数列,且\(\{\)\(a_{n}\)\(\}\)\(M\),求数列\(\{\)\(a_{n}\)\(\}\)公比\(q\)的最小值;

               \((3)\)已知数列\(\{\)\(a_{n}\)\(\}\)的各项均为正整数,且\(\{\)\(a_{n}\)\(\}\)\(M\)\(.\)设\(b_{n}\)\(=\)\(a_{a}\)\({\,\!}^{n}\),\(c_{n}\)\(=\)\(a\)\({\,\!}_{1+}\)\({\,\!}_{a}\)\({\,\!}^{n}\),若数列\(\{\)\(b\)\({\,\!}_{n}\)\(\}\),\(\{\)\(c_{n}\)\(\}\)均为等差数列,求证:数列\(\{\)\(b\)\({\,\!}_{n}\)\(\}\),\(\{\)\(c_{n}\)\(\}\)有相同的公差.

            • 9. 已知数列\(\{ \)\(a_{n}\)\(\}\)中, \(a\)\({\,\!}_{1}=1\),\({a}_{n+1}= \dfrac{2{a}_{n}}{2+{a}_{n}} ( \)\(n\)\(∈N_{+}).\)
              \((\)Ⅰ\()\)求 \(a\)\({\,\!}_{2}\), \(a\)\({\,\!}_{3}\), \(a\)\({\,\!}_{4}\)的值,猜想数列\(\{ \)\(a_{n}\)\(\}\)的通项公式;
              \((\)Ⅱ\()\)运用\((\)Ⅰ\()\)中的猜想,写出用三段论证明数列\(\{\dfrac{1}{{a}_{{n}}}\}\)是等差数列时的大前提、小前提和结论.
            • 10.

              已知数列\(\{{{a}_{n}}\}\)满足\({{a}_{n}}=2{{a}_{n-1}}+{{2}^{n}}-1(n\in {{\mathbf{N}}_{+}}\),且\(n\geqslant 2)\),\({{a}_{4}}={81}\).

              \((\)Ⅰ\()\)求数列的前三项\({{a}_{1}}\),\({{a}_{2}}\),\({{a}_{3}}\);

              \((\)Ⅱ\()\)数列\(\left\{ \dfrac{{{a}_{n}}+p}{{{2}^{n}}} \right\}\)为等差数列,求实数\(p\)的值;

              \((\)Ⅲ\()\)求数列\(\{{{a}_{n}}\}\)的前\(n\)项和\({{S}_{n}}\).

            0/40

            进入组卷