优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 数列的前\(n\)项和为,则的前\(50\)项的和为(    )
              A.\(49\)
              B.\(50\)
              C.\(99\)
              D.\(100\)
            • 2.

              \((1)\)各棱长为\(\sqrt{2}\)的正四面体的外接球与内切球体积之比为______,

              \((2)\)函数\(y{=}\cos^{2}x{+}\sin x\)的最大值是______.

              \((3)\)若数列\(\{ a_{n}\}\)满足\(\dfrac{1}{a_{n{+}1}}{-}\dfrac{1}{a_{n}}{=}d\),\((n{∈}N^{{*}}{,}d\)为常数\()\),则称数列\(\{ a_{n}\}\)为调和数列,已知数列\(\{\dfrac{1}{x_{n}}\}\)为调和数列,且\(x_{1}{+}x_{2}{+…+}x_{10}{=}100\),则\(x_{4}{+}x_{7}{=}\) ______ .

              \((4)\)设数列\(\{ a_{n}\}\)的前\(n\)项和为\(S_{n}(n{∈}N^{{*}})\),关于数列\(\{ a_{n}\}\)有下列命题:
              \({①}\)若\(\{ a_{n}\}\)既是等差数列又是等比数列,则\(a_{n}{=}a_{n{+}1}(n{∈}N^{{*}})\);
              \({②}\)若\(S_{n}{=}an^{2}{+}bn\),\((a{,}b{∈}R)\),则\(\{ a_{n}\}\)是等差数列;
              \({③}\)若\(S_{n}{=}1{-}({-}1)^{n}\),则\(\{ a_{n}\}\)是等比数列;
              \({④}\)若\(\{ a_{n}\}\)是等比数列,则\(S_{m}\),\(S_{2m}{-}S_{m}\),\(S_{3m}{-}S_{2m}(m{∈}N^{{*}})\)也成等比数列;
              其中正确的命题是______ .
            • 3.

              已知数列\(\{ a_{n}\}\)满足\(a_{1}{=}1\),\(2a_{n}a_{n{+}1}{+}a_{n{+}1}{-}a_{n}{=}0\),数列\(\{ b_{n}\}\)满足\(b_{n}{=}\dfrac{1}{2^{n}a_{n}}\).

              \((1)\)求证:数列\(\left\{ \dfrac{1}{a_{n}} \right\}\)是等差数列;

              \((2)\)求数列\(\{ b_{n}\}\)的前\(n\)项和\(S_{n}\).

            • 4.

              已知\(\{a_{n}\}\)是公差为\(d\)的等差数列,它的前\(n\)项和为\(S_{n}\),\(S_{4}=2S_{2}+4\),数列\(\{b_{n}\}\)中,\(b_{n}= \dfrac{1+a_{n}}{a_{n}}\).

              \((1)\)求公差\(d\)的值;

              \((2)\)若\(a_{1}=- \dfrac{5}{2}\),求数列\(\{b_{n}\}\)中的最大项和最小项的值.

            • 5.

              我国古代数学名著\(《\)张邱健算经\(》\)有“分钱问题”如下:“今有人与钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还数聚与均分之,人得一百钱,问人几何?”意思是:将钱分给若干人,第一人给\(3\)钱,第二人给\(4\)钱,第三人给\(5\)钱,以此类推,每人比前一人多给\(1\)钱,分完后,再把钱收回平均分给各人,结果每人分得\(100\)钱,问有多少人?则分钱问题中的人数为\(\_\)    \(\_\)

            • 6.

              在数列\(\{\)\(a_{n}\)\(\}\)中,\(a\)\({\,\!}_{1}=1\),当\(n\)\(\geqslant 2\)时,其前\(n\)项和\(S_{n}\)满足\(S_{n}^{2}={a}_{n}\left({S}_{n}- \dfrac{1}{2}\right) \).

              \((1)\)求\(S_{n}\)的表达式;

              \((2)\)设\({b}_{n}= \dfrac{{2}^{n}}{{S}_{n}} \),求\(\{\)\(b_{n}\)\(\}\)的前\(n\)项和\(T_{n}\)

            • 7.

              从集合\(\{1,2,3,⋯,2017 \) \(\}\)中任选三个不同的数,使这三个数成等差数列,这样的等差数列共有___________________个\((\)用数字作答\()\)

            • 8.

              已知等差数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和\({{S}_{n}}\),满足\({{S}_{3}}=0,{{S}_{5}}=-5\),则数列\(\left\{ \dfrac{1}{{{a}_{2n-1}}{{a}_{2n+1}}} \right\}\)的前\(50\)项和\({{T}_{50}}=\) __________.

            • 9.

              ,已知数列\(\{a_{n}\}\),\({{a}_{1}}=2,{{a}_{n+1}}=2{{a}_{n}}+{{2}^{n+1}}\)

              \((1)\)求证:数列\(\left\{ \dfrac{{{a}_{n}}}{{{2}^{n}}} \right\}\)是等差数列;

              \((2)\)设数列\({{b}_{n}}=\dfrac{n+2}{(n+1){{a}_{n}}}\),求证\({{b}_{1}}+{{b}_{2}}+{{b}_{3}}+\cdot \cdot \cdot \cdot \cdot \cdot +{{b}_{n}} < 1\) .

            • 10. 已知数列\({ }\!\!\{\!\!{ }{{a}_{n}}{ }\!\!\}\!\!{ }\)满足\({{a}_{1}}=9\),\({{a}_{n}}-{{a}_{n-1}}=n(n\geqslant 2,n\in {{N}^{*}})\),则\(\dfrac{2{{a}_{n}}}{n}\)的最小值为_________.
            0/40

            进入组卷