优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{n}=2a_{n}-n\).
              \((1)\)求证\(\{a_{n}+1\}\)为等比数列;
              \((2)\)求数列\(\{S_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 2.
              已知\(q\)和\(n\)均为给定的大于\(1\)的自然数,设集合\(M=\{0,1,2,…,q-1\}\),集合\(A=\{x|x=x_{1}+x_{2}q+…+x_{n}q^{n-1},x_{i}∈M,i=1,2,…n\}\).
              \((\)Ⅰ\()\)当\(q=2\),\(n=3\)时,用列举法表示集合\(A\);
              \((\)Ⅱ\()\)设\(s\),\(t∈A\),\(s=a_{1}+a_{2}q+…+a_{n}q^{n-1}\),\(t=b_{1}+b_{2}q+…+b_{n}q^{n-1}\),其中\(a_{i}\),\(b_{i}∈M\),\(i=1\),\(2\),\(…\),\(n.\)证明:若\(a_{n} < b_{n}\),则\(s < t\).
            • 3.
              已知等比数列\(\{a_{n}\}\)中,\(s_{n}\)为前\(n\)项和且\(a_{1}+a_{3}=5\),\(s_{4}=15\),
              \((1)\)求数列\(\{a_{n}\}\)的通项公式.
              \((2)\)设\(b_{n}=3\log _{2}a_{n}\),求\(b_{n}\)的前\(n\)项和\(T_{n}\)的值.
            • 4.
              已知数列\(\{\{a_{n}\}\)满足\(a_{1}=1,a_{n+1}= \dfrac {a_{n}}{a_{n}+2}\),\(b_{n+1}=(n-λ)( \dfrac {1}{a_{n}}+1)(n∈N^{*}),b_{1}=-λ\).
              \((1)\)求证:数列\(\{ \dfrac {1}{a_{n}}+1\}\)是等比数列;
              \((2)\)若数列\(\{b_{n}\}\)是单调递增数列,求实数\(λ\)的取值范围.
            • 5.
              若数列\(\{a_{n}\}\)满足\(a_{1}=-1,a_{n}=2a_{n-1}-1(n∈N^{*},n\geqslant 2)\).
              \((1)\)求证:数列\(\{a_{n}-1\}\)是等比数列,并求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=\log _{2}(1-a_{n})\),若数列\(\{ \dfrac {1}{b_{n+1}b_{n}}\}(n∈N^{*})\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < 1\).
            • 6.

              已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和\({{S}_{n}}\)满足:\({{S}_{n}}=1-{{a}_{n}}\).

              \((1)\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((2)\)设\({{c}_{n}}=4{{a}_{n}}+1\),求数列\(\left\{ {{c}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).

            • 7.
              数字 \(1,2,3,\cdots ,n\ \ (n\geqslant 2)\) 的任意一个排列记作 \(({{a}_{1}},{{a}_{2}},\cdots ,{{a}_{n}})\) ,设 \({{S}_{n}}\) 为所有这样的排列构成的集合. 集合\({{A}_{n}}=\{({{a}_{1}},{{a}_{2}},\cdots ,{{a}_{n}})\in {{S}_{n}}| \)任意整数\(i,j,1\leqslant i < j\leqslant n\) ,都有\({{a}_{i}}-i\leqslant {{a}_{j}}-j\}\) ;集合\({{B}_{n}}=\{({{a}_{1}},{{a}_{2}},\cdots ,{{a}_{n}})\in {{S}_{n}}| \)任意整数\(i,j,1\leqslant i < j\leqslant n\) ,都有\({{a}_{i}}+i\leqslant {{a}_{j}}+j\}\)
              \((\)Ⅰ\()\)用列举法表示集合\({{A}_{3}}\) \({{B}_{3}}\)
              \((\)Ⅱ\()\)求集合\({{A}_{n}}\bigcap {{B}_{n}}\) 的元素个数;

              \((\)Ⅲ\()\)记集合\({{B}_{n}}\)的元素个数为\({{b}_{n}}\)\(.\)证明:数列\(\{{{b}_{n}}\}\)是等比数列.

            • 8.
              已知正项数列\(\{a_{n}\}\),\(a_{1}=1\),\(a_{n}=a_{n+1}^{2}+2a_{n+1}\)
              \((\)Ⅰ\()\)求证:数列\(\{\log _{2}(a_{n}+1)\}\)为等比数列:
              \((\)Ⅱ\()\)设\(b_{n}=n1og_{2}(a_{n}+1)\),数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),求证:\(1\leqslant S_{n} < 4\).
            • 9.
              已知数列\(\{a_{n}\}\)满足:\(a_{1}=2\),\(a_{n+1}= \begin{cases} \dfrac {1}{2}a_{n},n{为偶数} \\ a_{n}+1,n{为奇数}\end{cases}\),若\(b_{n}=a_{2n-1}-1\).
              \((\)Ⅰ\()\)求证:数列\(\{b_{n}\}\)是等比数列;
              \((\)Ⅱ\()\)若数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),求\(S_{2n}\).
            • 10.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}=t(S_{n}-a_{n}+1)(t\)为常数,且\(t\neq 0\),\(t\neq 1)\).
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=a_{n}^{2}+S_{n}a_{n}\),若数列\(\{b_{n}\}\)为等比数列,求\(t\)的值;
              \((3)\)在满足条件\((2)\)的情形下,设\(c_{n}=4a_{n}+1\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),若不等式\( \dfrac {12k}{4+n-T_{n}}\geqslant 2n-7\)对任意的\(n∈N^{*}\)恒成立,求实数\(k\)的取值范围.
            0/40

            进入组卷